The capacity of adult mammals to regenerate sensory hair cells is not well defined. To explore early steps in this process, we examined reactivation of a transiently expressed developmental gene, Atoh1, in adult mouse utricles after neomycin-induced hair cell death in culture. Using an adenoviral reporter for Atoh1 enhancer, we found that Atoh1 transcription is activated in some hair cell progenitors (supporting cells) three days after neomycin treatment. By 18 days post-neomycin, the number of cells with Atoh1 transcriptional activity increased significantly, but few cells acquired hair cell features (i.e., accumulated ATOH1 or myosin VIIa protein or developed stereocilia). Treatment with DAPT, an inhibitor of γ-secretase, reduced notch pathway activity, enhanced Atoh1 transcriptional activity, and dramatically increased the number of Atoh1-expressing cells with hair cell features, but only in the striolar/juxtastriolar region. Similar effects were seen with TAPI-1, an inhibitor of another enzyme required for notch activity (TACE). Division of supporting cells was rare in any control or DAPT-treated utricles. This study shows that mature mammals have a natural capacity to initiate vestibular hair cell regeneration and suggests that regional notch activity is a significant inhibitor of direct transdifferentiation of supporting cells into hair cells following damage.
For in vitro to in vivo extrapolation (IVIVE) of brain distribution of drugs that are transported at the human bloodbrain barrier (BBB), it is important to quantify the interindividual and regional variability of drug transporter abundance at this barrier. Therefore, using quantitative targeted proteomics, we compared the abundance of adenosine triphosphate-binding cassette and solute carrier transporters in brain microvascular endothelial cells (BMECs) isolated from postmortem specimens of two matched brain regions, the occipital (Brodmann Area (BA)17) and parietal (BA39) lobe, from 30 adults. Of the quantifiable transporters, the abundance ranked: glucose transporter (GLUT)1 > breast cancer resistance protein > P-glycoprotein (P-gp) > equilibrative nucleoside transporter (ENT)1 > organic anion-transporting polypeptide (OATP)2B1. The abundance of multidrug resistance protein 1/2/3/4, OATP1A2, organic anion transporter (OAT)3, organic cation transporter (OCT)1/2, OCTN1/2, or ENT2 was below the limit of quantification. Transporter abundance per gram of tissue (scaled using GLUT1 abundance in BMEC vs. brain homogenate) in BA17 was 30-42% higher than BA39. The interindividual variability in transporter abundance (percentage of coefficient of variation (%CV)) was 35-57% (BA17) and 27-46% (BA39). These data can be used in proteomics-informed bottom-up IVIVE to predict human brain drug distribution.A major cause of neuroscience drug attrition is the failure to reach pharmacologically active drug exposure at the brain target site. 1 This is because the blood-brain barrier (BBB), the primary interface between the systemic circulation and the central nervous system (CNS), impedes the delivery of drugs to the brain. It does so because it has tight intracellular junctions, an absence of
Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.DOI: http://dx.doi.org/10.7554/eLife.18128.001
Using positron emission tomography imaging, we determined the hepatic concentrations and hepatobiliary transport of [11C]rosuvastatin (RSV; i.v. injection) in the absence (n = 6) and presence (n = 4 of 6) of cyclosporin A (CsA; i.v. infusion) following a therapeutic dose of unlabeled RSV (5 mg, p.o.) in healthy human volunteers. The sinusoidal uptake, sinusoidal efflux, and biliary efflux clearance (CL; mL/minute) of [11C]RSV, estimated through compartment modeling were 1,205.6 ± 384.8, 16.2 ± 11.2, and 5.1 ± 1.8, respectively (n = 6). CsA (blood concentration: 2.77 ± 0.24 μM), an organic‐anion‐transporting polypeptide, Na+‐taurocholate cotransporting polypeptide, and breast cancer resistance protein inhibitor increased [11C]RSV systemic blood exposure (45%; P < 0.05), reduced its biliary efflux CL (52%; P < 0.05) and hepatic uptake (25%; P > 0.05) but did not affect its distribution into the kidneys. CsA increased plasma concentrations of coproporphyrin I and III and total bilirubin by 297 ± 69%, 384 ± 102%, and 81 ± 39%, respectively (P < 0.05). These data can be used in the future to verify predictions of hepatic concentrations and hepatobiliary transport of RSV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.