Since early 2020, the whole world has been facing the deadly and highly contagious disease named coronavirus disease (COVID-19) and the World Health Organization declared the pandemic on 11 March 2020. Over 23 million positive cases of COVID-19 have been reported till late August 2020. Medical images such as chest X-rays and Computed Tomography scans are becoming one of the main leading clinical diagnosis tools in fighting against COVID-19, underpinned by Artificial Intelligence based techniques, resulting in rapid decision-making in saving lives. This article provides an extensive review of AI-based methods to assist medical practitioners with comprehensive knowledge of the efficient AI-based methods for efficient COVID-19 diagnosis. Nearly all the reported methods so far along with their pros and cons as well as recommendations for improvements are discussed, including image acquisition, segmentation, classification, and follow-up diagnosis phases developed between 2019 and 2020. AI and machine learning technologies have boosted the accuracy of Covid-19 diagnosis, and most of the widely used deep learning methods have been implemented and worked well with a small amount of data for COVID-19 diagnosis. This review presents a detailed mythological analysis for the evaluation of AI-based methods used in the process of detecting COVID-19 from medical images. However, due to the quick outbreak of Covid-19, there are not many ground-truth datasets available for the communities. It is necessary to combine clinical experts’ observations and information from images to have a reliable and efficient COVID-19 diagnosis. This paper suggests that future research may focus on multi-modality based models as well as how to select the best model architecture where AI can introduce more intelligence to medical systems to capture the characteristics of diseases by learning from multi-modality data to obtain reliable results for COVID-19 diagnosis for timely treatment .
In this paper, we have developed a new method of accurate detection of retinal blood vessels based on a deep convolutional neural network (CNN) model. This method plays an important role in the observation of many eye diseases. Retinal Images have many issues that make the process of vessels segmentation very hard. We treat each issue of the retina image with the greatest observation to obtain a well-segmented image. The first step is to apply a pre-processing method based on fuzzy logic and image processing tactics. In a second step, in order to generate the segmented images, we propose a strided encoderdecoder CNN model. This network is trained and optimized using the Dice Loss function that supports the class imbalance problem that is in the database. The proposed model has a U-Net shape, but it is deeper and the pooling layers are replaced with strided convolutional layers in the encoder. This modification allows for a more precise segmentation of vessels and accelerates the training process. The last step is post-processing for removing the noisy pixels as well as the shadow of the optic disc. The performance of the proposed method was evaluated on DRIVE and STARE databases. The proposed method gives a sensitivity of 0.802 and 0.801 respectively on DRIVE and STARE, with an accuracy of 0.959 and 0.961 respectively. We focused on sensitivity and accuracy measurements that represent the accuracy of the model, especially tiny vessels. According to the results, the model outperforms many other proposed methods, especially in the abovementioned measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.