BackgroundBrassinosteroids (BRs) play crucial roles in plant development and also promote tolerance to a range of abiotic stresses. Although much has been learned about their roles in plant development, the mechanisms by which BRs control plant stress responses and regulate stress-responsive gene expression are not fully known. Since BR interacts with other plant hormones, it is likely that the stress tolerance conferring ability of BR lies in part in its interactions with other stress hormones.ResultsUsing a collection of Arabidopsis mutants that are either deficient in or insensitive to abscisic acid (ABA), ethylene (ET), jasmonic acid (JA) and salicylic acid (SA), we studied the effects of 24-epibrassinloide (EBR) on basic thermotolerance and salt tolerance of these mutants. The positive impact of EBR on thermotolerance in proportion to wild type was evident in all mutants studied, with the exception of the SA-insensitive npr1-1 mutant. EBR could rescue the ET-insensitive ein2 mutant from its hypersensitivity to salt stress-induced inhibition of seed germination, but remained ineffective in increasing the survival of eto1-1 (ET-overproducer) and npr1-1 seedlings on salt. The positive effect of EBR was significantly greater in the ABA-deficient aba1-1 mutant as compared to wild type, indicating that ABA masks BR effects in plant stress responses. Treatment with EBR increased expression of various hormone marker genes in both wild type and mutant seedlings, although to different levels.ConclusionsThese results together indicate that the redox-sensitive protein NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1), a master regulator of SA-mediated defense genes, is likely a critical component of EBR-mediated increase in thermotolerance and salt tolerance, but it is not required for EBR-mediated induction of PR-1 (PATHOGENESIS-RELATED1) gene expression; that BR exerts anti-stress effects independently as well as through interactions with other hormones; that ABA inhibits BR effects during stress; and that BR shares transcriptional targets with other hormones.
Summary The plant hormone brassinosteroid (BR) plays essential roles in plant growth and development, while also controlling plant stress responses. This dual ability of BR is intriguing from a mechanistic point of view and as a viable solution for stabilizing crop yields under the changing climatic conditions. Here we report a time course analysis of BR responses under both stress and no‐stress conditions, the results of which establish that BR incorporates many stress‐related features even under no‐stress conditions, which are then accompanied by a dynamic stress response under unfavourable conditions. Found within the BR transcriptome were distinct molecular signatures of two stress hormones, abscisic acid and jasmonic acid, which were correlated with enhanced endogenous levels of the two hormones in BR‐treated seedlings. The marked presence of genes related to protein metabolism and modification, defence responses and calcium signalling highlights the significance of their associated mechanisms and roles in BR processes. Functional analysis of loss‐of‐function mutants of a subset of genes selected from the BR transcriptome identified abiotic stress‐related roles for ACID PHOSPHATASE5 (ACP5), WRKY33, JACALIN‐RELATED LECTIN1‐3 (JAC‐LEC1‐3) and a BR‐RESPONSIVE‐RECEPTOR‐LIKE KINASE (BRRLK). Overall, the results of this study provide a clear link between the molecular changes impacted by BR and its ability to confer broad‐range stress tolerance, emphasize the importance of post‐translational modification and protein turnover as BR regulatory mechanisms and demonstrate the BR transcriptome as a repertoire of new stress‐related regulatory and structural genes.
Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.
Brassinosteroids (BRs) are a class of plant steroidal hormones that play essential roles in plant growth and development. Systematic studies had first been undertaken concomitantly to determine both the effects of exogenous BR on stress phenotypes of Arabidopsis thaliana and Brassica napus (rapeseed) seedlings and the expression of stress marker genes in BR-treated and untreated seedlings. When reproducible and convincing evidence of the role of BR in stress tolerance had been obtained, molecular mechanisms underlying the ability of BR to confer tolerance against heat, cold, drought, and salt stress, as well as pathogen resistance were studied with several molecular approaches and tools. The results of these studies have together provided valuable insights into how BRs, through their control of many basic cellular processes and stress responses, promote vigor in plants and prepare the plant to mount a dynamic response upon environmental challenges. Protocols to assess BR effects on abiotic stress tolerance in Arabidopsis and rapeseed seedlings are described here and they can be fine-tuned and adapted for other plant species.
Cuticular waxes form the primary interface between a plant and its external environment. The most important function of this hydrophobic interface is regulation of non-stomatal water loss, gas exchange and conferring resistance to a wide range of biotic as well as abiotic stresses. The biosynthesis, transport and deposition of the cuticular waxes are tightly coordinated by complex molecular networks, which are also often regulated in response to various developmental, biotic as well as abiotic cues. Evidences from model as well as non-model systems suggest that targeted manipulation of the molecular regulators of wax biosynthetic pathways could enhance plant resistance to multiple stresses as well as enhance the post-harvest quality of produce. Under the current scenario of varying climatic conditions, where plants often encounter multiple stress conditions, cuticular waxes is an appropriate trait to be considered for crop improvement programs, as any attempt to improve cuticular traits would be advantageous to the crop to enhance its adaptability to diverse adverse conditions. This chapter briefs on the significance of cuticular waxes in plants, its biosynthesis, transport and deposition, its implication on plant resistance to adverse conditions, and the current options in targeted manipulation of wax-traits for breeding new crop types.Abiotic and Biotic Stress in Plants 2 vegetative and reproductive growth. Some of the abiotic stresses such as drought, high temperature and salinity can influence the occurrence and spread of biotic agents like pathogens, insects, and weeds [1]. In crops like tomato, cucurbits and rice, temperature is one of the most important deciding factors for the occurrence of bacterial diseases [2]. Temperature can also alter the incidence of vector-borne diseases by modifying spread of vectors.But, in their natural environment, plants face combination of stresses, especially under the changing climate scenario. The effect of stresses would be more pronounced under combined (biotic and abiotic) stresses [3], while simultaneous occurrence of abiotic and biotic stresses are more destructive to crop production [4]. Hence, there exists a need now, to look for common traits that can contribute for plant adaptation to such multifarious stressful conditions and sustain crop productivity as well. In this scenario, it is desirable to have a single trait that can confer tolerance to multiple (abiotic and biotic) stresses. Cuticular waxes, a major component of plant cuticle covering all the aerial parts of the plants, can be considered as an important trait for combined stress resistance. Cuticular waxes: a component of plant cuticleThe cuticle is a unique structure developed by land plants during the course of their evolution from an aquatic to a terrestrial lifestyle [5]. The primary role of this lipophilic layer, comprising cutin and cuticular waxes, was to limit non-stomatal water loss by functioning as a physical barrier between the plant surface and its external environment [6]. Development of a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.