Primary tissue organoids and cell spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a three dimensional laminin-rich extracellular matrix supports the polarized, stress resilient spheroid phenotype of mammary epithelial cells. Cells within a three dimensional laminin-rich extracellular matrix decreased and redistributed the actin crosslinker filamin to reduce their cortical actin tension. Cells with low actin tension had increased plasma membrane protrusions that promoted negative plasma membrane curvature and fostered protein associations with the plasma membrane, consistent with efficient protein secretion. By contrast, cells engaging a laminin-rich extracellular matrix in two dimensions had high filamin-dependent cortical actin tension, exhibited compromised endoplasmic reticulum function including increased expression of PKR-like Endoplasmic Reticulum Kinase signaling effectors, and had compromised protein secretion. Cells with low filamin-mediated cortical actin tension and reduced endoplasmic reticulum stress response signaling secreted, and assembled, a polarized endogenous basement membrane and survived better, and their spheroids were more resistant to exogenous stress. The findings implicate filamin-dependent cortical actin tension in endoplasmic reticulum function and highlight a role for mechanics in organoid homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.