Much of survival analysis is concerned with absorbing events, i.e., subjects can only experience a single event such as mortality. This article is focused on non-absorbing or recurrent events, i.e., subjects are capable of experiencing multiple events. Recurrent events have been studied by many; however, most rely on the restrictive assumptions of linearity and proportionality. We propose a new method for analyzing recurrent events with Bayesian Additive Regression Trees (BART) avoiding such restrictive assumptions. We explore this new method via a motivating example of hospital admissions for diabetes patients and simulated data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.