We present a study of thermal noise of commercially available atomic force microscopy (AFM) cantilevers in air and in water. The purpose of this work is to investigate the oscillation behavior of a clamped AFM microlever in liquids. Up to eight vibration modes are recorded. The experimental results are compared to theoretical predictions from the hydrodynamic functions corresponding to rigid transverse oscillations of an infinitely long rectangular beam. Except for the low-frequency modes, the known hydrodynamic functions cannot describe the amount of dissipated energy due to the liquid motion induced by the cantilever oscillation. The observed variation of the damping coefficient is smaller than the one predicted. The difference at higher modes between the mentioned theoretical description and experimental results is discussed with the help of numerical solutions of the three-dimensional Navier–Stokes equation.
We present a sensitive measurement of the dissipation and the effective viscosity of a simple confined liquid (octamethylcyclotetrasiloxane) using an atomic force microscope. The experimental data show that the damping and the effective viscosity increase and present oscillations as the gap between the cantilever tip and the surface is diminished. To our knowledge, the damping and the viscosity modulation are reported here with such good accuracy for the first time. Such an experimental result is different from what has been reported earlier where only a continuous increase of the damping and the viscosity are observed.
International audienceWe present measurements of the hydrodynamic damping of an atomic force microscopy cantilever-tip immersed in water and approaching a mica surface or a graphite surface. Water completely wets the mica surface while it partially wets the graphite surface with a contact angle of 74°. The measurements show that the damping is higher on mica than on graphite giving a slip length of about 8 nm on this latter surface
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.