The insulin-like growth factor-I receptor (IGF-IR) plays a critical role in breast tumorigenesis and is overexpressed in most primary tumors. BRCA1 is a transcription factor involved in numerous cellular processes, including DNA damage repair, cell growth, and apoptosis. Consistent with its tumor suppressor role, we demonstrated that BRCA1 repressed the activity of co-transfected IGF-IR promoter reporter constructs in a number of breast cancer-derived cell lines. Results of electrophoretic mobility shift assay showed that BRCA1 did not exhibit any speci¢c binding to the IGF-IR promoter, although it prevented binding of Sp1. Co-immunoprecipitation experiments demonstrated that BRCA1 action was associated with speci¢c interaction with Sp1 protein. Furthermore, using a series of glutathione S-transferase-tagged BRCA1 fragments, we mapped the Sp1-binding domain to a segment located between aa 260 and 802. In summary, our data suggest that the IGF-IR gene is a novel downstream target for BRCA1 action. ß
Coimmunoprecipitation experiments showed that p53 and WT1 physically interact, whereas electrophoretic mobility shift assay studies revealed that p53 modulates the ability of WT1 to bind to the IGF-IR promoter. In summary, the transcriptional activity of WT1 proteins and their ability to function as tumor suppressors or oncogenes depends on the cellular status of p53.
Myoblast differentiation and fusion to multinucleated muscle cells can be studied in myoblasts grown in culture. Calpain (Ca(2+)-activated thiol protease) induced proteolysis has been suggested to play a role in myoblast fusion. We previously showed that calpastatin (the endogenous inhibitor of calpain) plays a role in cell membrane fusion. Using the red cell as a model, we found that red cell fusion required calpain activation and that fusibility depended on the ratio of cell calpain to calpastatin. We found recently that calpastatin diminishes markedly in myoblasts during myoblast differentiation just prior to the start of fusion, allowing calpain activation at that stage; calpastatin reappears at a later stage (myotube formation). In the present study, the myoblast fusion inhibitors TGF-beta, EGTA and calpeptin (an inhibitor of cysteine proteases) were used to probe the relation of calpastatin to myoblast fusion. Rat L8 myoblasts were induced to differentiate and fuse in serum-poor medium containing insulin. TGF-beta and EGTA prevented the diminution of calpastatin. Calpeptin inhibited fusion without preventing diminution of calpastatin, by inhibiting calpain activity directly. Protein levels of mu-calpain and m-calpain did not change significantly in fusing myoblasts, nor in the inhibited, non-fusing myoblasts. The results indicate that calpastatin level is modulated by certain growth and differentiation factors and that its continuous presence results in the inhibition of myoblast fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.