A six day industrial trial using hydrochar as part of the carbon source for hot metal production was performed in a production blast furnace (BF). The hydrochar came from two types of feedstocks, namely an organic mixed biosludge generated from pulp and paper production and an organic green waste residue. These sludges and residues were upgraded to hydrochar in the form of pellets by using a hydrothermal carbonization (HTC) technology. Then, the hydrochar pellets were pressed into briquettes together with commonly used briquetting material (in-plant fines such as fines from pellets and scraps, dust, etc. generated from the steel plant) and the briquettes were top charged into the blast furnace. In total, 418 tons of hydrochar briquettes were produced. The aim of the trials was to investigate the stability and productivity of the blast furnace during charging of these experimental briquettes. The results show that briquettes containing hydrochar from pulp and paper industries waste and green waste can partially be used for charging in blast furnaces together with conventional briquettes. Most of the technological parameters of the BF process, such as the production rate of hot metal (<1.5% difference between reference days and trial days), amount of dust, fuel rate and amount of injected coal, amount of slag, as well as contents of FeO in slag and %C, %S and %P in the hot metal in the experimental trials were very similar compared to those in the reference periods (two days before and two days after the trials) without using these experimental charge materials. Thus, it was proven that hydrochar derived from various types of organic residues could be used for metallurgical applications. While in this trial campaign only small amounts of hydrochar were used, nevertheless, these positive results support our efforts to perform more in-depth investigations in this direction in the future.
In this study, CaO-containing wastes from pulp and paper industries such as fly ash (FA) and calcined lime mud (LM) were utilized to neutralize and purify acidic wastewaters from the pickling processes in steel mills. The investigations were conducted by laboratory scale trials using four different batches of wastewaters and additions of two types of CaO-containing waste materials. Primary lime (PL), which is usually used for the neutralization, was also tested in the same experimental set up in the sake of comparison. The results show that these secondary lime sources can effectively increase the pH of the acidic wastewaters as good as the commonly used primary lime. Therefore, these secondary lime sources could be potential candidates for application in neutralization processes of industrial acidic wastewater treatment. Moreover, concentrations of metals (such as Cr, Fe, Ni, Mo and Zn) can decrease dramatically after neutralization by using secondary lime. The LM has a purification effect from the given metals, similar to the PL. Application of fly ash and calcined lime mud as neutralizing agents can reduce the amount of waste from pulp and paper mills sent to landfill and decrease the need for nature lime materials in the steel industry.
A number of carbon-rich (containing up to 47 wt% C) and lime-rich (containing up to 96 wt% of CaO-compounds) waste products from the pulp and paper industries can be used in iron and steel industry as fuels and slag formers for various metallurgical processes such as blast furnaces (BF), cupola furnaces (CF), argon oxygen decarburization (AOD) converters and electric arc furnaces (EAF). In most cases, these wastes consist of different size powders. In order to facilitate loading, transportation and charging of these powder wastes, briquetting is required. In this study, a pulverized AOD slag was tested as a binder component for briquetting of CaO-containing wastes (such as mesa, lime mud and fly ash) from pulp and paper industries. Moreover, mechanical testing of the possibilities for loading, transportation and unloading operations were done, specifically drop test trials were done for briquettes with different chemical compositions and treatments such as heating and storage. The results showed that an addition of 10–20% of AOD slag as a binder component followed by heat-treatment at 850 °C significantly improved the mechanical properties of the CaO-containing briquettes. An application of these briquettes will significantly reduce the consumption of natural resources (such as nature lime) in the metallurgical processes. Moreover, it can reduce the landfill area of wastes from pulp and paper industries, which is important from an environmental point-of-view.
During electric arc furnace (EAF) steelmaking process, burnt lime is charged together with other slag forming materials to attain a specific basicity of the slag and to achieve purification by removing unwanted elements. Herein, fly ash (FA) containing ≈60% CaO generated from pulp/paper mills is tested to partially (15–50%) replace primary lime (PL) in pilot scale EAF trials. The obtained results show good possibilities. It is found that an increased amount of FA instead of PL reduces the required amount of FeSi (up to 3 kg t−1 of scrap) and increases the sulfur content in the final slag. As a result, the amount of required slag/ton of steel can be decreased. However, the phosphorus content in the metal is slightly increased. The replacement ratio of FA will be limited by the acceptable phosphorus level in the final steel, due to higher phosphorus content in FA from pulp and paper mills compared with that in PL. Applications of FA as slag formers can reduce the consumption of natural resources in the metallurgical processes. In addition, it can reduce the amount of wastes from pulp/paper industries sent to landfill, which is important from an environmental point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.