TX 75083-3836, U.S.A., fax 01-972-952-9435. AbstractSince the middle 1980s, seawater breakthrough has been observed for a number of wells in a major offshore Field operated by Statoil. This Field has also several tie-ins. Both sulphate and carbonate scale deposition has been identified in the near well bore area and tubing. Inhibitor squeeze treatments were regularly carried out to prevent wells from damages due to scale precipitation.The conventional phosphonate scale inhibitor (DETA-phosphonate) was often used. Some of the sandstone formations in the oil field are relatively "clean" with very little amount of clay materials i.e. Etive and Tarbert formation. As a result, a relatively short inhibitor squeeze life was seen in these formations after the squeeze treatments with a phosphonate scale inhibitor. Other reservoirs had acceptable squeeze life, but due to environmental requirements a wide set of inhibitors was studied.In order to reduce the well intervention frequency and extend an inhibitor squeeze life, a method involving a polymer interaction between a polymer scale inhibitor and polymer additive has been developed. In addition to the enhanced adsorption; attributed by the surface charge modification by the adsorption of the positively charged polymer additive on the sandstone surface, the interactions between polymer inhibitor and additive further increase the inhibitor retention in the formation. This polymer interaction approach is different from a conventional precipitation squeeze where calcium chloride was used. Also, unlike the conventional precipitation squeeze, the polymer additive can be pre-injected and rapidly adsorbed onto a rock surface. The subsequently injected inhibitor will react with the additive on the rock surfaces, resulting in a precipitation on a rock surface. This avoids the bulk precipitations where a permeability reduction was often caused by a conventional precipitation squeeze. During the production, the precipitated polymer inhibitor was released through a hydrolysis process.This paper presents a detailed method and field results based on the treatments using the polymer inhibitor and additive package in the oil field. The application of polymer interaction package significantly improved the inhibitor squeeze life. Satisfactory results have been achieved from the field trials. The unique polymer reaction package satisfies the stringent Norwegian environmental regulations of low toxicity, high biodegradation and low bioaccumulation.
TX 75083-3836, U.S.A., fax 01-972-952-9435. AbstractSince the middle 1980s, seawater breakthrough has been observed for a number of wells in a major offshore Field operated by Statoil. This Field has also several tie-ins. Both sulphate and carbonate scale deposition has been identified in the near well bore area and tubing. Inhibitor squeeze treatments were regularly carried out to prevent wells from damages due to scale precipitation.The conventional phosphonate scale inhibitor (DETA-phosphonate) was often used. Some of the sandstone formations in the oil field are relatively "clean" with very little amount of clay materials i.e. Etive and Tarbert formation. As a result, a relatively short inhibitor squeeze life was seen in these formations after the squeeze treatments with a phosphonate scale inhibitor. Other reservoirs had acceptable squeeze life, but due to environmental requirements a wide set of inhibitors was studied.In order to reduce the well intervention frequency and extend an inhibitor squeeze life, a method involving a polymer interaction between a polymer scale inhibitor and polymer additive has been developed. In addition to the enhanced adsorption; attributed by the surface charge modification by the adsorption of the positively charged polymer additive on the sandstone surface, the interactions between polymer inhibitor and additive further increase the inhibitor retention in the formation. This polymer interaction approach is different from a conventional precipitation squeeze where calcium chloride was used. Also, unlike the conventional precipitation squeeze, the polymer additive can be pre-injected and rapidly adsorbed onto a rock surface. The subsequently injected inhibitor will react with the additive on the rock surfaces, resulting in a precipitation on a rock surface. This avoids the bulk precipitations where a permeability reduction was often caused by a conventional precipitation squeeze. During the production, the precipitated polymer inhibitor was released through a hydrolysis process.This paper presents a detailed method and field results based on the treatments using the polymer inhibitor and additive package in the oil field. The application of polymer interaction package significantly improved the inhibitor squeeze life. Satisfactory results have been achieved from the field trials. The unique polymer reaction package satisfies the stringent Norwegian environmental regulations of low toxicity, high biodegradation and low bioaccumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.