Automatic Environmental Sound Recognition (AESR) is an essential topic in modern research in the field of pattern recognition. We can convert a short audio file of a sound event into a spectrogram image and feed that image to the Convolutional Neural Network (CNN) for processing. Features generated from that image are used for the classification of various environmental sound events such as sea waves, fire cracking, dog barking, lightning, raining, and many more. We have used the log-mel spectrogram auditory feature for training our six-layer stack CNN model. We evaluated the accuracy of our model for classifying the environmental sounds in three publicly available datasets and achieved an accuracy of 92.9% in the urbansound8k dataset, 91.7% accuracy in the ESC-10 dataset, and 65.8% accuracy in the ESC-50 dataset. These results show remarkable improvement in precise environmental sound recognition using only stack CNN compared to multiple previous works, and also show the efficiency of the log-mel spectrogram feature in sound recognition compared to Mel Frequency Cepstral Coefficients (MFCC), Wavelet Transformation, and raw waveform. We have also experimented with the newly published Rectified Adam (RAdam) as the optimizer. Our study also shows a comparative analysis between the Adaptive Learning Rate Optimizer (Adam) and RAdam optimizer used in training the model to correctly classifying the environmental sounds from image recognition architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.