A large collection of full-length cDNAs is essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We obtained a total of 39 936 soybean cDNA clones (GMFL01 and GMFL02 clone sets) in a full-length-enriched cDNA library which was constructed from soybean plants that were grown under various developmental and environmental conditions. Sequencing from 5′ and 3′ ends of the clones generated 68 661 expressed sequence tags (ESTs). The EST sequences were clustered into 22 674 scaffolds involving 2580 full-length sequences. In addition, we sequenced 4712 full-length cDNAs. After removing overlaps, we obtained 6570 new full-length sequences of soybean cDNAs so far. Our data indicated that 87.7% of the soybean cDNA clones contain complete coding sequences in addition to 5′- and 3′-untranslated regions. All of the obtained data confirmed that our collection of soybean full-length cDNAs covers a wide variety of genes. Comparative analysis between the derived sequences from soybean and Arabidopsis, rice or other legumes data revealed that some specific genes were involved in our collection and a large part of them could be annotated to unknown functions. A large set of soybean full-length cDNA clones reported in this study will serve as a useful resource for gene discovery from soybean and will also aid a precise annotation of the soybean genome.
Though crossing wild relatives to modern cultivars is a usual means to introduce alleles of stress tolerance, an alternative is de novo domesticating wild species that are already tolerant to various kinds of stresses. As a test case, we chose Vigna stipulacea Kuntze, which has fast growth, short vegetative stage, and broad resistance to pests and diseases. We developed an ethyl methanesulfonate–mutagenized population and obtained three mutants with reduced seed dormancy and one with reduced pod shattering. We crossed one of the mutants of less seed dormancy to the wild type and confirmed that the phenotype was inherited in a Mendelian manner. De novo assembly of V. stipulacea genome, and the following resequencing of the F2 progenies successfully identified a Single Nucleotide Polymorphism (SNP) associated with seed dormancy. By crossing and pyramiding the mutant phenotypes, we will be able to turn V. stipulacea into a crop which is yet primitive but can be cultivated without pesticides.
The coat protein (CP) gene derived from Turnip mosaic virus (TuMV) isolate JO was introduced into Arabidopsis thaliana and the resulting transgenic progenies were analyzed for resistance to TuMV. Transgenic Arabidopsis plants with no detectable transcripts of the introduced CP gene exhibited complete resistance to TuMV. There was no significant correlation between the resistance and the copy number of the transgene. Instead, small interfering RNAs (siRNAs) were detected in these resistant plants, indicating that the resistance is attributed to RNA silencing. The RNA-mediated resistance was not only inherited over successive generations but also effective against 17 worldwide TuMV isolates with different pathogenicity. Comparative analysis of the CP genes among the 17 TuMV isolates revealed that the 380-nt in the 3' region is highly conserved, suggesting the importance of the 3' conserved region for broad-spectrum resistance. These results indicate that introduction of the TuMV-CP gene into the target Brassicaceae plants followed by selecting transformants that show RNA silencing for the transgenes can be an effective and reliable strategy for developing crucifer crops with a broad spectrum of resistance to TuMV.
Two soybean [Glycine max (L.) Merr.] germplasm lines have been identified for unique fatty acid content. The very high content of palmitic acid in HPKKJ10 is controlled by the fap2 and fapx loci, and the very high content of stearic acid in M25 is controlled by the st2 locus. If the fap2 and fapx loci are independently inherited from the st2 locus, soybean germplasm could be developed with more unique and useful combinations of these fatty acids. The objectives of this study were to combine the loci of high palmitic and stearic acids, and determine the effects of altered contents of palmitic and stearic acids on other fatty acids. HPKKJ10 was reciprocally crossed to M25. The data from F2 seed indicated that the fap2 and fapx loci controlling high palmitic acid were independently inherited from the st2 locus controlling high stearic acid. Thus, the germplasm (HPS) with the very high palmitic acid trait from HPKKJ10, and very high stearic acid trait from M25, was easily developed. The increases in palmitic acid due to the fap2 and fapx loci in HPKKJ10, and the increases in stearic acid due to the st2 locus in M25 were individually associated with changes in oleic acid. The combined increases in these two fatty acids in HPS were associated with decreases in oleic and linoleic acids, and increases in linolenic acid. The development of HPS with high content of saturated fatty acids could open new markets for soybean oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.