In this study, we have proposed a low-pressure reactive ion etching of bulk polymer materials with a gas mixture of CF4 and O2, and have achieved precise fabrication of poly(methyl methacrylate) (PMMA) and perfluoroalkoxy (PFA) bulk polymer plates with high-aspect-ratio and narrow gap array structures, such as, pillar, frustum, or cone, on a nano/micro scale. The effects of the etching conditions on the shape and size of each pillar were evaluated by changing etching duration and the size/material of etching mask. The fabricated PMMA array structures indicate possibilities of optical waveguide and nanofiber array. PFA cone array structures showed super-hydrophobicity without any chemical treatments. Also, polystyrene-coated silica spheres were used as an etching mask for the pillar array structure formation to control the gap between pillars.
We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C(60) ion beam production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.