epsilon-Poly-L-lysine (epsilon-PL) is a homo-poly-amino acid characterized by the peptide bond between the carboxyl and epsilon-amino groups of L-lysine. epsilon-PL shows a wide range of antimicrobial activity and is stable at high temperatures and under both acidic and alkaline conditions. The mechanism of the inhibitory effect of epsilon-PL on microbial growth is the electrostatic adsorption to the cell surface of microorganisms on the basis of its poly-cationic property. Due to this antimicrobial activity, epsilon-PL is now industrially produced in Japan as a food additive by a fermentation process using Streptomyces albulus. In spite of the practical application of epsilon-PL, the biosynthetic mechanisms of epsilon-PL have not been clarified at all. epsilon-PL producers commonly possess membrane-bound epsilon-PL-degrading aminopeptidase, which might play a role in self-protection.
Streptomyces sp. GF3587 and 3546 were found to be imine-reducing strains with high R- and S-selectivity by screening using 2-methyl-1-pyrroline (2-MPN). Their whole-cell catalysts produced 91 mM R-2-methylpyrrolidine (R-2-MP) with 99.2%e.e. and 27.5 mM S-2-MP (92.3%e.e.) from 2-MPN at 91-92% conversion in the presence of glucose, respectively.
A NADPH-dependent (S)-imine reductase (SIR) was purified to be homogeneous from the cell-free extract of Streptomyces sp. GF3546. SIR appeared to be a homodimer protein with subunits of 30.5 kDa based on SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It also catalyzed the (S)-enantioselective reduction of not only 2-methyl-1-pyrroline (2-MPN) but also 1-methyl-3,4-dihydroisoquinoline and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline. Specific activities for their imines were 130, 44, and 2.6 nmol min(-1) mg(-1), and their optical purities were 92.7 % ee, 96.4 % ee, and >99 % ee, respectively. Using a NADPH-regenerating system, 10 mM 2-MPN was converted to amine with 100 % conversion and 92 % ee after 24 h. The amino acid sequence analysis revealed that SIR showed about 60 % identity to 6-phosphogluconate dehydrogenase. However, it showed only 37 % identity with Streptomyces sp. GF3587 (R)-imine reductase. Expression of SIR in Escherichia coli was achieved, and specific activity of the cell-free extract was about two times higher than that of the cell-free extract of Streptomyces sp. GF3546.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.