This research is aimed at multiple-objective optimization of water operations in a water supply and distribution system. These objectives include reducing energy use while at the same time meeting water quality needs. The first objective is to propose water operations aimed at minimizing energy consumption. The second is to optimize water supply and distribution from the standpoint of water quality based on total organic carbon and the third is to attempt optimization that satisfies the first two objectives through multipurpose fuzzy linear programming (LP). This study mathematically formulates water operation planning issues focusing on reducing energy consumption and improving water quality in a water distribution system. Estimates show that a reduction in energy use of around 10% can be expected. Fuzzy LP is applied to achieve a balance among multiple objectives. The research demonstrates the effectiveness of the proposed multipurpose optimization when applied to trade-offs in water operation.
Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.
Many of the waterworks facilities in Japan were constructed during the rapid economic growth period. Today, the deterioration and renovation of these aged facilities have become a pressing issue. There are approximately 600,000 km worth of water pipelines laid out across Japan, accounting for about 70% of the nation's water-related assets (totalling ¥40 trillion). To provide water that is safe to use, it is necessary to improve and innovate water purification technologies; not only that, it is also vital to properly maintain and manage the pipelines. The current research aims to apply reliability engineering in the waterworks field as one possible approach and to show its viability; it will also obtain vital messages revealed within pipeline incident data. In other words, we collected the information concerning water distribution pipeline incidents through questionnaire surveys and then analysed the cumulative failure distribution (unreliability) by pipeline material, the failure probability density and failure rate, among others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.