In order to realize more natural and various motions like humans, humanlike musculoskeletal tendon-driven humanoids have been studied. Especially, it is very challenging to design musculoskeletal body structure which consists of complicated bones, redundant powerful and flexible muscles, and large number of distributed sensors. In addition, it is very challenging to reveal humanlike intelligence to manage these complicated musculoskeletal body structure. This paper sums up life-sized musculoskeletal humanoids Kenta, Kotaro, Kenzoh and Kenshiro which we have developed so far, and describes key technologies to develop and control these robots
We have developed and studied musculoskeletal humanoids. Our goal is to realize a more human-like humanoid as a real human simulator, which has the same muscle and joint arrangements as human's and can do natural and dynamic motions as well as humans. Especially, it is very challenging to design musculoskeletal structure which can contain a large number of high powered muscles. Now, we design new fullbody musculoskeletal humanoid Kenshiro. This paper presents the concepts of this new robot and also shows the outline of our latest results Kenshiro, which is the succeeding version of our previous robot Kojiro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.