The methods used to model thermal plasmas, including treatments of diffusion in arcs in gas mixtures, are reviewed. The influence of thermophysical properties on the parameters of tungsten–inert-gas (TIG) welding arcs, particularly those that affect the weld pool, is investigated using a two-dimensional model in which the arc, anode and cathode are included self-consistently. The effect of changing each of six thermophysical properties on the characteristics of an argon TIG arc is assessed. The influence of the product of specific heat and mass density is found to be particularly important in determining the arc constriction. By examining the influence of the different properties on the heat flux density, current density and shear stress at the anode, it is concluded that the weld pool depth can be increased by using shielding gases with high specific heat, thermal conductivity and viscosity. The effect of metal vapour on the arc and weld pool properties is assessed. The most important effect of the metal vapour is found to be the increased electrical conductivity at low temperatures, which leads to lower heat flux density and current density at the weld pool, implying a shallower weld pool.
Tungsten–inert-gas welding arcs are modelled using a two-dimensional axisymmetric computational code. Both electrodes (the tungsten cathode and the metal anode workpiece) and the arc plasma are included self-consistently in the computational domain. The influence of adding helium, hydrogen and nitrogen to the argon shielding gas is investigated. It is found that addition of any of the gases increases the heat flow to and the current density at the anode. The shear stress and the arc pressure at the anode surface are increased by adding hydrogen or nitrogen or up to about 50 mol% helium, but decrease when more helium is added. It is predicted that the effect of adding any of the gases is to increase the depth of the weld pool, in agreement with the experimental evidence. The results are explained by referring to the thermodynamic and transport properties of the gas mixtures.
Adriamycin (ADR) is effective against a wide range of human neoplasms. However, its clinical use is compromised by serious cardiac toxicity, possibly through induction of peroxidation in cardiac lipids. Ascorbic acid, a potent antioxidant, was examined for effect in reducing ADR toxicity in mice and guinea pigs. Ascorbic acid had no effect on the antitumor activity of ADR in mice inoculated with leukemia L1210 or Ehrlich ascites carcinoma, but it significantly prolonged the life of animals treated with ADR. ADR elevated lipid peroxide levels in mouse heart, and ascorbic acid prevented the elevation. The significant prevention of ADR-induced cardiomyopathy in guinea pigs by ascorbic acid was proved by electron microscopy. Ascorbic acid and the derivatives may delay general toxicity of ADR and also prevent the cardiac toxicity. The results also suggest the clinical efficacy of the combined treatment of ADR and ascorbic acid or the derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.