An immunodominant HTLV-I-specific epitope in the HTLV-I envelope glycoprotein (GP) 46 has been described. To determine if the analogous region of HTLV-II contains a similarly immunogenic and specific epitope, the polymerase chain reaction (PCR) was used to amplify HTLV- II DNA fragments encoding various portions of the putative epitope. The synthesized DNAs were cloned into lambda-phage gt11 and screened for production of immunoreactive fusion protein using sera from HTLV-II- or HTLV-I-infected individuals. Antisera from HTLV-II-infected individuals identified three of four recombinant clones when tested in a plaque immunoassay. Fusion protein from one of the clones, GH2-K15, was purified and analyzed by Western blot against a panel of HTLV-I and HTLV-II antisera. Twenty-one of 22 HTLV-II-infected sera were reactive with the GH2-K15 epitope. Sera from HTLV-I-infected and HTLV-I- uninfected individuals did not cross-react with GH2-K15. Western blot analysis of recombinant proteins encoding portions of the HTLV-II sequences in the Gh2-K15 antigen localized the HTLV-II-specific epitope to a 17-amino acid sequence. Recombinant antigens containing this epitope should be useful for type-specific serologic diagnosis of HTLV- II infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.