Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partially propagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP's). DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and non-human primates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS and TBI in the near future.
Abstract; Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partially propagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP's). DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and non-human primates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS and TBI in the near future.
We describe the hemodynamic effects and metabolic fate of inhaled NO gas in 12 anesthetized piglets. Pulmonary and systemic hemodynamic responses to incremental [NO] (5-80 ppm) were tested during ventilation with high- [0.30 inspired O2 fraction (FIO2)] and low-O2 (0.10 FIO2) mixtures. In six animals, inhalation of 40 ppm NO was maintained over 6 h to test effects of prolonged exposure (0.30 FIO2). In the other six animals, pulmonary hypertension was induced by hypoxic ventilation (0.10 FIO2) and responses to NO were tested. Inhaled low [NO] partially reversed pulmonary hypertension induced by alveolar hypoxia; mean pulmonary arterial pressure decreased from 31.4 +/- 2.3 mmHg during hypoxia to 18.2 +/- 1.2 mmHg during 5 ppm NO. Mean pulmonary arterial pressure at 0.10 FIO2 did not fall further at higher [NO] (10-40 ppm) and never reached control levels. Pulmonary vascular resistance increased with institution of hypoxic ventilation and fell with subsequent administration of NO, ultimately reaching control levels. Inhaled NO did not affect systemic vascular resistance. Plasma levels of NO2- + NO3- and methemoglobin (MetHb) levels increased with increasing [NO]. Over 6 h of NO administration during high-O2 ventilation, MetHb equilibrated at subtoxic levels while NO2- + NO3- increased. Nitrosylhemoglobin, analyzed by electron paramagnetic resonance spectrophotometry was not detected in blood at any time. At the relatively low concentrations (5-80 ppm) that are effective in relieving experimental pulmonary hypertension induced by alveolar hypoxia, inhaled NO gas causes accumulation of NO2- + NO3- in plasma and a small increase in MetHb but no detectable nitrosylhemoglobin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.