Background: Microbial rhodopsins in Chlamydomonas are employed for photoorientation and developmental processes. Results: HKR1 is a UVA-absorbing rhodopsin that is bimodally switched between a UV-and a blue light-absorbing isoform with different light colors.
Conclusion:The chromophore of the dark-adapted UV state contains a deprotonated Schiff base stabilized by a 13-cis,15-anti conformation. Significance: This is the initial characterization of the first member of a novel rhodopsin family.
Kinetochores are supramolecular assemblies that link centromeres to microtubules for sister chromatid segregation in mitosis. For this, the inner kinetochore CCAN/Ctf19 complex binds to centromeric chromatin containing the histone variant CENP‐A, but whether the interaction of kinetochore components to centromeric nucleosomes is regulated by posttranslational modifications is unknown. Here, we investigated how methylation of arginine 37 (R37Me) and acetylation of lysine 49 (K49Ac) on the CENP‐A homolog Cse4 from Saccharomyces cerevisiae regulate molecular interactions at the inner kinetochore. Importantly, we found that the Cse4 N‐terminus binds with high affinity to the Ctf19 complex subassembly Okp1/Ame1 (CENP‐Q/CENP‐U in higher eukaryotes), and that this interaction is inhibited by R37Me and K49Ac modification on Cse4. In vivo defects in cse4‐R37A were suppressed by mutations in OKP1 and AME1, and biochemical analysis of a mutant version of Okp1 showed increased affinity for Cse4. Altogether, our results demonstrate that the Okp1/Ame1 heterodimer is a reader module for posttranslational modifications on Cse4, thereby targeting the yeast CCAN complex to centromeric chromatin.
Posttranslational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome. Unexpectedly, mutation of Cse4-R143 (cse4-R143A) exacerbated the kinetochore defect of mutations in components of the NDC80 complex of the outer kinetochore (spc25-1) and the MIND complex (dsn1-7). The analysis of suppressor mutations of the spc25-1 cse4-R143A growth defect highlighted residues in Spc24, Ndc80 and Spc25 that localize to the tetramerization domain of the NDC80 complex and the Spc24-Spc25 stalk, suggesting that the mutations enhance interactions among NDC80 complex components and thus stabilize the complex. Furthermore, the Set2 histone methyltransferase inhibited kinetochore function in spc25-1 cse4-R143A cells, possibly by methylating Cse4-K131. Taken together, our data suggest that Cse4-R143 and -K131 methylation affect the stability of the centromeric nucleosome, which is detrimental in the context of defective NDC80 tetramerization and can be compensated for by strengthening interactions among NDC80 complex components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.