SUMMARY Genetic and biochemical defects of mitochondrial function are a major cause of human disease, but their link to mitochondrial morphology in situ has not been defined. Here, we develop a quantitative three-dimensional approach to map mitochondrial network organization in human muscle at electron microscopy resolution. We establish morphological differences between human and mouse and among patients with mitochondrial DNA (mtDNA) diseases compared to healthy controls. We also define the ultrastructure and prevalence of mitochondrial nanotunnels, which exist as either free-ended or connecting membrane protrusions across non-adjacent mitochondria. A multivariate model integrating mitochondrial volume, morphological complexity, and branching anisotropy computed across individual mitochondria and mitochondrial populations identifies increased proportion of simple mitochondria and nanotunnels as a discriminant signature of mitochondrial stress. Overall, these data define the nature of the mitochondrial network in human muscle, quantify human-mouse differences, and suggest potential morphological markers of mitochondrial dysfunction in human tissues.
Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease.
Neuro- and myotoxicological signs and symptoms are significant clinical features of envenoming snakebites in many parts of the world. The toxins primarily responsible for the neuro and myotoxicity fall into one of two categories—those that bind to and block the post-synaptic acetylcholine receptors (AChR) at the neuromuscular junction and neurotoxic phospholipases A2 (PLAs) that bind to and hydrolyse membrane phospholipids of the motor nerve terminal (and, in most cases, the plasma membrane of skeletal muscle) to cause degeneration of the nerve terminal and skeletal muscle. This review provides an introduction to the biochemical properties of secreted sPLA2s in the venoms of many dangerous snakes and a detailed discussion of their role in the initiation of the neurologically important consequences of snakebite. The rationale behind the experimental studies on the pharmacology and toxicology of the venoms and isolated PLAs in the venoms is discussed, with particular reference to the way these studies allow one to understand the biological basis of the clinical syndrome. The review also introduces the involvement of PLAs in inflammatory and degenerative disorders of the central nervous system (CNS) and their commercial use in the food industry. It concludes with an introduction to the problems associated with the use of antivenoms in the treatment of neuro-myotoxic snakebite and the search for alternative treatments.
Defects in cilium and centrosome function result in a spectrum of clinically-related disorders, known as ciliopathies. However, the complex molecular composition of these structures confounds functional dissection of what any individual gene product is doing under normal and disease conditions. As part of an siRNA screen for genes involved in mammalian ciliogenesis, we and others have identified the conserved centrosomal protein Azi1/Cep131 as required for cilia formation, supporting previous Danio rerio and Drosophila melanogaster mutant studies. Acute loss of Azi1 by knock-down in mouse fibroblasts leads to a robust reduction in ciliogenesis, which we rescue by expressing siRNA-resistant Azi1-GFP. Localisation studies show Azi1 localises to centriolar satellites, and traffics along microtubules becoming enriched around the basal body. Azi1 also localises to the transition zone, a structure important for regulating traffic into the ciliary compartment. To study the requirement of Azi1 during development and tissue homeostasis, Azi1 null mice were generated (Azi1Gt/Gt). Surprisingly, Azi1Gt/Gt MEFs have no discernible ciliary phenotype and moreover are resistant to Azi1 siRNA knock-down, demonstrating that a compensation mechanism exists to allow ciliogenesis to proceed despite the lack of Azi1. Cilia throughout Azi1 null mice are functionally normal, as embryonic patterning and adult homeostasis are grossly unaffected. However, in the highly specialised sperm flagella, the loss of Azi1 is not compensated, leading to striking microtubule-based trafficking defects in both the manchette and the flagella, resulting in male infertility. Our analysis of Azi1 knock-down (acute loss) versus gene deletion (chronic loss) suggests that Azi1 plays a conserved, but non-essential trafficking role in ciliogenesis. Importantly, our in vivo analysis reveals Azi1 mediates novel trafficking functions necessary for flagellogenesis. Our study highlights the importance of both acute removal of a protein, in addition to mouse knock-out studies, when functionally characterising candidates for human disease.
SUMMARY The brain’s ability to process complex information relies on the constant supply of energy through aerobic respiration by mitochondria. Neurons contain three anatomically distinct compartments—the soma, dendrites, and projecting axons—which have different energetic and biochemical requirements, as well as different mitochondrial morphologies in cultured systems. In this study, we apply quantitative three-dimensional electron microscopy to map mitochondrial network morphology and complexity in the mouse brain. We examine somatic, dendritic, and axonal mitochondria in the dentate gyrus and cornu ammonis 1 (CA1) of the mouse hippocampus, two subregions with distinct principal cell types and functions. We also establish compartment-specific differences in mitochondrial morphology across these cell types between young and old mice, highlighting differences in age-related morphological recalibrations. Overall, these data define the nature of the neuronal mitochondrial network in the mouse hippocampus, providing a foundation to examine the role of mitochondrial morpho-function in the aging brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.