Studies were designed to examine the effect of a selective endothelinA (ETA) receptor antagonist, BQ123, on severe postischemic acute renal failure (ARF) in Sprague-Dawley rats. Severe ARF was induced in uninephectomized, chronically instrumented rats by 45-min renal artery occlusion. BQ123 (0.1 mg/kg. min) or vehicle was infused intravenously for 3 h on the day after ischemia. Measurements before infusion (24 h control) showed a 98% decrease in glomerular filtration rate (GFR), increase in fractional excretion of sodium from 0.6 to 39%, and in plasma K+ from 4.3 to 6.5 mEq/liter. All vehicletreated rats died in 4 d because of continuous deterioration of renal function, resulting in an increase of plasma K+ to fatal levels (> 8 mEq/liter). Infusion of BQ123 significantly improved survival rate (75%) by markedly improving tubular reabsorption of Na' and moderately increasing GFR and K+ excretion. Plasma K+ returned to basal levels by the 5th d after ischemia. Improved tubular function was followed by gradual recovery in GFR and urinary concentrating mechanism.Additional data from renal clearance studies in rats with moderate ARF (30-min ischemia) and in normal rats with intact kidneys showed that ETA receptor blockade increases Nan reabsorption and has no effect on renal hemodynamics. These results indicate that in the rat, the ETA receptor subtype mediates tubular epithelial function, and it plays a significant role in the pathogenesis of ischemia-induced ARF. Treatment with the selective ETA receptor antagonist reverses deteriorating tubular function in established ARF, an effect of possible therapeutic significance. (J. Clin. Invest. 1994. 93:900-906.) Key words: ischemia * moderate and severe acute renal failure * endothelinA receptor * BQ123
Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. An extended-release (XR) formulation has been designed to provide a once-daily (QD) dosing option to patients to achieve comparable pharmacokinetic (PK) parameters to the twice-daily immediate-release (IR) formulation. We conducted 2 randomized, open-label, phase 1 studies in healthy volunteers. Study A characterized single-dose and steady-state PK of tofacitinib XR 11 mg QD and intended to demonstrate equivalence of exposure under single-dose and steady-state conditions to tofacitinib IR 5 mg twice daily. Study B assessed the effect of a high-fat meal on the bioavailability of tofacitinib from the XR formulation. Safety and tolerability were monitored in both studies. In study A (N = 24), the XR and IR formulations achieved time to maximum plasma concentration at 4 hours and 0.5 hours postdose, respectively; terminal half-life was 5.9 hours and 3.2 hours, respectively. Area under plasma concentration-time curve (AUC) and maximum plasma concentration (C max ) after single-and multiple-dose administration were equivalent between the XR and IR formulations. In study B (N = 24), no difference in AUC was observed for fed vs fasted conditions. C max increased by 27% under the fed state. On repeat administration, negligible accumulation (<20%) of systemic exposures was observed for both formulations. Steady state was achieved within 48 hours of dosing with the XR formulation. Tofacitinib administration as an XR or IR formulation was generally well tolerated in these studies.
The physiological roles of endothelin-B (ETB) receptor subtypes in systemic and renal hemodynamics were assessed in conscious Sprague-Dawley rats. Mean arterial pressure, hindlimb flow, and renal blood flow were measured via an implanted catheter and pulsed Doppler flow probes. Bolus intravenous injections of sarafotoxin 6c (S6c), a selective ETB agonist, elicited transient dose-dependent vasodilation, followed by sustained vasoconstriction in the systemic bed, but only vasoconstriction in the renal bed. RES-701-1, a selective ETB antagonist, blocked the dilator and potentiated the constrictor effect; SB-209670, a mixed ET receptor antagonist, attenuated both responses to S6c. In follow-up studies, the role of endogenous ET was assessed by administration of the antagonists alone: RES-701-1, SB-209670, and the ETA-selective antagonist BQ-123. RES-701-1 unmasked a significant systemic and renal vasoconstriction, which was attenuated by SB-209670 but not by BQ-123. SB-209670 and BQ-123 had no effect on basal hemodynamic parameters. Data from radioligand binding experiments showed that RES-701-1 binds with high affinity to the cloned human ETB receptor but poorly to the ETB receptor predominant in the rat kidney. Collectively, the results indicate that 1) the vascular effects of ET in the rat are mediated by two ETB receptor subtypes: an RES-701-1-sensitive subtype, mediating vasodilation, and an RES-701-1-insensitive subtype, mediating vasoconstriction; 2) the predominant role of endogenous ET is vasodilation; and 3) the ETA receptor plays a negligible role in the control of vascular tone in the rat.
Studies were designed to compare the effect of the nitric oxide inhibitor, Nω-nitro-L-arginine (L-NNA), and the novel ETB receptor antagonist, RES-701-1, on changes in blood pressure and renal blood flow induced by exogenous endothelin receptor agonists and to determine the effect of L-NNA on basal hemodynamics in conscious, chronically instrumented rats. Infusion of low (nonpressor) doses of L-NNA or RES-701-1 potentiated systemic and renal vasoconstriction induced by bolus injections of endothelin-1 or sarafotoxin 6c. Bolus intravenous injection or sustained infusion of L-NNA alone resulted in dose-dependent increases in blood pressure and decreases in renal blood flow, similar to our recently reported results with RES-701-1. Vasoconstriction induced by inhibition of nitric oxide was attenuated by SB 209670, a mixed ETa/b receptor antagonist, but not by BQ 123, an ETA receptor antagonist; neither antagonist altered basal hemodynamics. Collectively, the results indicate that: (1) endothelin plays an important role in the control of basal vascular tone by mediating both vasodilation and vasoconstriction; (2) these effects are mediated by different ETB receptor subtypes in the rat, one located on the endothelium that mediates vasodilation via the nitric oxide pathway, the other located on the vascular smooth muscle that mediates contraction.
ETN 25 mg BIW and ETN 10 mg BIW slowed radiographic progression and improved clinical outcomes more effectively than MTX in this Japanese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.