Shift work is associated with impaired alertness and performance due to sleep loss and circadian misalignment. This study examined sleep between shift types (day, evening, night), and alertness and performance during day and night shifts in 52 intensive care workers. Sleep and wake duration between shifts were evaluated using wrist actigraphs and diaries. Subjective sleepiness (Karolinska Sleepiness Scale, KSS) and Psychomotor Vigilance Test (PVT) performance were examined during day shift, and on the first and subsequent night shifts (3rd, 4th or 5th). Circadian phase was assessed using urinary 6-sulphatoxymelatonin rhythms. Sleep was most restricted between consecutive night shifts (5.74 ± 1.30 h), consecutive day shifts (5.83 ± 0.92 h) and between evening and day shifts (5.20 ± 0.90 h). KSS and PVT mean reaction times were higher at the end of the first and subsequent night shift compared to day shift, with KSS highest at the end of the first night. On nights, working during the circadian acrophase of the urinary melatonin rhythm led to poorer outcomes on the KSS and PVT. In rotating shift workers, early day shifts can be associated with similar sleep restriction to night shifts, particularly when scheduled immediately following an evening shift. Alertness and performance remain most impaired during night shifts given the lack of circadian adaptation to night work. Although healthcare workers perceive themselves to be less alert on the first night shift compared to subsequent night shifts, objective performance is equally impaired on subsequent nights.
Reduced sensitivity to short-wavelength (blue) light with age has been shown for light-induced melatonin suppression. The current research aimed to determine if a similar age-related reduction occurs in subjective alertness, mood, and circadian phase-advancing responses. Young (n = 11, 23.0 +/- 2.9 years) and older (n = 15, 65.8 +/- 5.0 years) healthy males participated in laboratory sessions that included a 2-h intermittent monochromatic light exposure, individually timed to begin 8.5 h after their dim light melatonin onset (DLMO) determined in a prior visit. In separate sessions, pupil-dilated subjects were exposed to short-wavelength blue (lambda max 456 nm) and medium-wavelength green (lambda max 548 nm) light matched for photon density (6 x 1013 photons/cm2/sec). Subjective alertness, sleepiness, and mood were verbally assessed every 15 to 30 min before, during, and up to 5 h after the light exposure. The magnitude of phase advance was assessed as the difference in plasma melatonin rhythm phase markers before and after light exposure. Following blue light exposure, responses in older men were significantly diminished compared with young men for subjective alertness (p < 0.0001), sleepiness (p < 0.0001), and mood (p < 0.05) during and after light exposure. There was no significant effect of age on these parameters following green light exposure. The phase advances to both blue and green light were larger in the young than older subjects, but did not reach statistical significance. In general, phase advances to blue light were slightly larger than to green light in both young and old, but did not reach statistical significance. The current results add to previous findings demonstrating reduced responsiveness to the acute effects of blue light in older people (melatonin suppression, alertness). However, under the study paradigm, the phase-advancing response to light does not appear to be significantly impaired with age.
SUMMARYTo assess the relationships between sleepiness and the incidence of adverse driving events in nurses commuting to and from night and rotating shifts, 27 rotating and permanent night shift-working nurses were asked to complete daily sleep and duty logs, and wear wrist-activity monitors for 2 weeks (369 driving sessions). During all commutes, ocular measures of drowsiness, including the Johns Drowsiness Scale score, were assessed using the Optalertä system. Participants self-reported their subjective sleepiness at the beginning and end of each drive, and any events that occurred during the drive. Rotating shift nurses reported higher levels of sleepiness compared with permanent night shift nurses. In both shift-working groups, self-reported sleepiness, drowsiness and drive events were significantly higher during commutes following night shifts compared with commutes before night shifts. Strong associations were found between objective drowsiness and increased odds of driving events during commutes following night shifts. Maximum total blink duration (mean = 7.96 s) during the drive and pre-drive Karolinska Sleepiness Scale (mean = 5.0) were associated with greater incidence of sleep-related events [OR, 5.35 (95% CI, 1.32, 21.60), OR, 1.69 (95% CI, 1.04, 2.73), respectively]. Inattention was strongly associated with a Johns Drowsiness Scale score equal to or above 4.5 [OR, 4.58 (95% CI,]. Hazardous driving events were more likely to occur when drivers had been awake for 16 h or more [OR, 4.50 (95% CI, 1.81, 11.16)]. Under real-world driving conditions, shift-working nurses experience high levels of drowsiness as indicated by ocular measures, which are associated with impaired driving performance following night shift work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.