Statistics on internal migration are important for keeping estimates of subnational population numbers up-to-date as well as urban planning, infrastructure development and impact assessment, among other applications. However, migration flow statistics typically remain constrained by the logistics of infrequent censuses or surveys. The penetration rate of mobile phones is now high across the globe with rapid recent increases in ownership in low-income countries. Analysing the changing spatiotemporal distribution of mobile phone users through anonymized call detail records (CDRs) offers the possibility to measure migration at multiple temporal and spatial scales. Based on a dataset of 72 billion anonymized CDRs in Namibia from October 2010 to April 2014, we explore how internal migration estimates can be derived and modelled from CDRs at subnational and annual scales, and how precision and accuracy of these estimates compare to census-derived migration statistics. We also demonstrate the use of CDRs to assess how migration patterns change over time, with a finer temporal resolution compared to censuses. Moreover, we show how gravity-type spatial interaction models built using CDRs can accurately capture migration flows. Results highlight that estimates of migration flows made using mobile phone data is a promising avenue for complementing more traditional national migration statistics and obtaining more timely and local data.
We study the possibility to perform neutrino oscillation tomography and to determine the neutrino mass hierarchy in kilometer-scale ice Čerenkov detectors by means of the θ 13 -driven matter effects which occur during the propagation of atmospheric neutrinos deep through the Earth. We consider the ongoing IceCube/DeepCore neutrino observatory and future planned extensions, such as the PINGU detector, which has a lower energy threshold. Our simulations include the impact of marginalization over the neutrino oscillation parameters and a fully correlated systematic uncertainty on the total number of events. For the current best-fit value of the mixing angle θ 13 , the DeepCore detector, due to its relatively high-energy threshold, could only be sensitive to fluctuations on the normalization of the Earth's density of ∆ρ ±10% at ∼ 1.6σ CL after 10 years in the case of a true normal hierarchy. For the two PINGU configurations we consider, overall density fluctuations of ∆ρ ±3% (±2%) could be measured at the 2σ CL after 10 years, also in the case of a normal mass hierarchy. We also compare the prospects to determine the neutrino mass hierarchy in these three configurations and find that this could be achieved at the 5σ CL, for both hierarchies, after 5 years in DeepCore and about 1 year in PINGU. This clearly shows the importance of lowering the energy threshold below 10 GeV so that detectors are fully sensitive to the resonant matter effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.