Three relatively simple metabolic markers can help identify overweight individuals who are sufficiently insulin resistant to be at increased risk for various adverse outcomes. In the absence of a standardized insulin assay, we suggest that the most practical approach to identify overweight individuals who are insulin resistant is to use the cut-points for either triglyceride concentration or the triglyceride-high-density lipoprotein cholesterol concentration ratio.
Aims/hypothesis The biological mechanism by which obesity predisposes to insulin resistance is unclear. One hypothesis is that larger adipose cells disturb metabolism via increased lipolysis. While studies have demonstrated that cell size increases in proportion to BMI, it has not been clearly shown that adipose cell size, independent of BMI, is associated with insulin resistance. The aim of this study was to test this widely held assumption by comparing adipose cell size distribution in 28 equally obese, otherwise healthy individuals who represented extreme ends of the spectrum of insulin sensitivity, as defined by the modified insulin suppression test. Subjects and methods Subcutaneous periumbilical adipose tissue biopsy samples were fixed in osmium tetroxide and passed through the Beckman Coulter Multisizer to obtain cell size distributions. Insulin sensitivity was quantified by the modified insulin suppression test. Quantitative real-time PCR for adipose cell differentiation genes was performed for 11 subjects. Results All individuals exhibited a bimodal cell size distribution. Contrary to expectations, the mean diameter of the larger cells was not significantly different between the insulin-sensitive and insulin-resistant individuals. Moreover, insulin resistance was associated with a higher ratio of small to large cells (1.66±1.03 vs 0.94±0.50, p=0.01). Similar cell size distributions were observed for isolated adipose cells. The real-time PCR results showed two-to threefold lower expression of genes encoding markers of adipose cell differentiation (peroxisome proliferator-activated receptor γ1 [PPARγ1], PPARγ2, GLUT4, adiponectin, sterol receptor element binding protein 1c) in insulinresistant compared with insulin-sensitive individuals. Conclusions/interpretation These results suggest that after controlling for obesity, insulin resistance is associated with an expanded population of small adipose cells and decreased expression of differentiation markers, suggesting that impairment in adipose cell differentiation may contribute to obesity-associated insulin resistance.
Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host–microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.
A significant relationship exists between insulin resistance and plasma concentrations of ADMA. Pharmacological intervention with rosiglitazone enhanced insulin sensitivity and reduced ADMA levels. Increases in plasma ADMA concentrations may contribute to the endothelial dysfunction observed in insulin-resistant patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.