The autosomal dominant retinitis pigmentosa (RP) locus, designated RP1, has been mapped through linkage studies to a 4-cM interval at 8q11-13. Here we describe a new photoreceptor-specific gene that maps in this interval and whose expression is modulated by retinal oxygen levels in vivo. This gene consists of at least 4 exons that encode a predicted protein of 2,156 amino acids. A nonsense mutation at codon 677 of this gene is present in approximately 3% of cases of dominant RP in North America. We also detected two deletion mutations that cause frameshifts and introduce premature termination codons in three other families with dominant RP. Our data suggest that mutations in this gene cause dominant RP, and that the encoded protein has an important but unknown role in photoreceptor biology.
Epidemiological studies suggest that prenatal exposure to different types of viral or bacterial infections may be associated with similar outcomes; i.e., an increased risk of mental illness disorders in the offspring. Infections arising from various causes have similar debilitating effects in later life, suggesting that the exact pathogen may not be the critical factor in determining the neurological and cognitive outcome in the offspring. Instead, it is thought that response of the innate immune system, specifically the increased production of inflammatory cytokines, may be the critical mediator in altering fetal brain development pre-disposing the offspring to mental illness disorders later in life. Inflammatory cytokines are essential for normal brain development. Factors such as the site of cytokine production, a change in balance between anti- and pro- inflammatory cytokines, placental transfer of cytokines, the effects of cytokines on glial cells, and the effects of glucocorticoids are important when evaluating the impact of maternal infection on fetal brain development. Although it is clear that cytokines are altered in the fetal brain following maternal infection, further evidence is required to determine if cytokines are the critical factor that alters the trajectory of brain development, subsequently leading to postnatal behavioral and neurological abnormalities.
Synthesis of the androgen dehydroepiandrosterone (DHEA) by the fetal adrenal gland is important for placental estrogen production and may also be important for modulating the effects of glucocorticoids on the developing brain. The presence of cortisol in spiny mouse (Acomys cahirinus) blood led us to determine whether the adrenal gland of this precocial rodent also synthesized DHEA. Cytochrome P450 enzyme 17α-hydroxylase/17,20-lyase (P450c17), cytochrome-b5 (Cytb5), and 3β-hydroxysteroid dehydrogenase (3βHSD) were detected in the adrenal gland from 30 days gestation (term = 39 days), and DHEA, cortisol, and aldosterone were detected in fetal plasma from this time. Plasma DHEA concentrations increased 4-fold, whereas cortisol concentrations decreased from day 30 of gestation until the day of birth. Explant culture of fetal adrenal tissue showed that DHEA was produced from exogenous pregnenolone, and thus, the DHEA in the fetal circulation is likely to be of fetal origin. Clear zonation of the fetal adrenal cortex was evident by 38 days gestation when expression of Cytb5 was present throughout the cortex, and coexpression of P450c17 and Cytb5 occurred in the zona reticularis and fasciculata. 3βHSD was expressed in the cortex from at least 30 days gestation and decreased as term approached, consistent with the fall of cortisol in late gestation in this species. These results show that the spiny mouse adrenal gland, like that of the human fetus, can synthesize and secrete DHEA from at least 30 days (relative gestation length, 30 days of a 39-day gestation, 0.76) of gestation, and DHEA may have important roles in placental biosynthesis of estrogens and in modulating the actions of glucocorticoids in the developing brain in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.