We have analyzed the ability of an adenoviral vector encoding the exon 1b region of the p14 ARF tumor suppressor ( ARF ) to suppress the growth and viability of an array of tumor cell lines of various origins and varying p53 and Rb status, in order to establish the clinical potential of ARF. An important activity of ARF is regulation of p53 stability and function through binding to the mdm2 protein. By sequestering mdm2, ARF may promote growth suppression through the Rb pathway as well because mdm2 can bind to Rb and attenuate its function. Whereas the high frequency of ARF gene deletion in human cancers, accounting for some 40% of cancers overall, suggests that ARF would be a strong candidate for therapeutic application, the possible dependence of ARF activity on p53 and Rb function presents a potential limitation to its application, as these functions are often impaired in cancer. We show here that a replication -defective adenovirus, Ad1b, encoding the exon 1b region of ARF is most effective in tumor cells expressing endogenous wild -type p53. Nevertheless, Ad1b suppresses tumor cell growth and viability in vitro and in vivo, inducing G1 or G2 cell cycle arrest and cell death even in tumor cells lacking both functional Rb and p53 pathways, and independently of induction of the p53 downstream targets, p21, bax, and mdm2. These results point to an activity of ARF in human tumor cells that is independent of Rb or p53, and suggest that therapeutic applications based on ARF would have a broad clinical application in cancer.
We have examined the effects of a replication-defective adenovirus encoding p53 (RPR/INGN 201 [Ad5CMV-p53]; Adp53), alone or in combination with the breast cancer therapeutic doxorubicin (Adriamycin), to suppress growth and induce apoptosis in breast cancer cells in vitro. We have also examined the in vivo effect of intratumoral administration of Adp53, alone or in combination with doxorubicin, to suppress the growth of established subcutaneous MDA-MB-435 breast cancer tumors. Finally, using the MDA-MB-435 orthotopic model of metastatic breast cancer, we have examined the effect of systemic administration of Adp53, alone or in combination with doxorubicin, to reduce the incidence of metastases. We find that whereas in vitro treatment of cells with Adp53 reduces [(3)H]thymidine incorporation by about 90% at 48 hr, cell viability at 6 days is reduced by only some 50% relative to controls. Although apoptosis is detectable in Adp53-treated cultures, these results suggest that a large fraction of Adp53-treated cells merely undergo reversible cell cycle arrest. Combined treatment with Adp53 and doxorubicin results in a greater than additive loss of viability in vitro and increased apoptosis. In vivo, locally administered Adp53 suppresses growth of established subcutaneous tumors in nude mice and suppression is enhanced by doxorubicin. In the metastatic breast cancer model, systemic administration of Adp53 plus doxorubicin leads to a significant reduction in the incidence of metastases relative to Adp53 or doxorubicin alone. Taken together, these data indicate an additive to synergistic effect of Adp53 and doxorubicin for the treatment of primary and metastatic breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.