The mechanisms required for cGMP-induced Ca2+ release in the sea urchin egg were investigated using both egg homogenates and intact eggs. The postulated pathway of cGMP-dependent protein kinase (PKG) activation of ADP-ribosyl cyclase for production of cADPR to activate the ryanodine receptor Ca2+ channel was tested with a variety of activators (cGMP analogs and cIMP) and inhibitors (Rp-8-pCPT-cGMPS, 3-aminopyridine NAD, nicotinamide, and spermine). Our observations are consistent with Ca2+ release by cGMP in the egg being dependent on an isoform of PKG that is distinct from the mammalian enzyme. PKG activity in the sea urchin egg was activated by cIMP, but was insensitive to cGMP analogs, which are potent activators of mammalian isoenzymes. Surprisingly, it appears the activation of the cGMP-dependent Ca2+ release pathway was unnecessary during fertilization. Inhibitors of either PKG or ADP-ribosyl cyclase activities did not prevent the transient rise in intracellular Ca2+ activity in heparin-loaded eggs during fertilization. These results suggest the synthesis of cADPR during fertilization is not necessary for regulating the Ca2+ event.
A better knowledge of biochemical and structural properties of human chromosomes is important for cytogenetic investigations and diagnostics. Fluorescence in situ hybridization (FISH) is a commonly used technique for the visualization of chromosomal details. Localizing specific gene probes by FISH combined with conventional fluorescence microscopy has reached its limit. Also, microdissecting DNA from G-banded human metaphase chromosomes by either a glass tip or by laser capture needs further improvement. By both atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM), local information from G-bands and chromosomal probes can be obtained. The final resolution allows a more precise localization compared to standard techniques, and the extraction of very small amounts of chromosomal DNA by the scanning probe is possible. Besides new strategies towards a better G-band and fluorescent probe detection, this study is focused on the combination of biochemical and nanomanipulation techniques which enable both nanodissection and nanoextraction of chromosomal DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.