Molecular chaperones are known to play key roles in the synthesis, transport and folding of nuclearencoded mitochondrial proteins and of proteins encoded by mitochondrial DNA. Although the regulation of heat-shock genes has been the subject of considerable investigation, regulation of the genes encoding mitochondrial chaperones is not well defined. We have found that stress applied specifically to the mitochondria of mammalian cells is capable of eliciting an organelle-specific, molecular chaperone response. Using the loss of mitochondrial DNA as a means of producing a specific mitochondrial stress, we show by Western-blot analysis that mtDNA-less (e") rat hepatoma cells show an increase in the steady-state levels of chaperonin 60 (cpn 60) and chaperonin 10 (cpn 10). Nuclear transcription assays show that the upregulation of these chaperones is due to transcriptional activation. There was no effect on the inducible cytosolic Hsp 70, Hsp 72, nor on mtHsp 70 in @' ) cells, leading us to concluded that stress applied selectively to mitochondria elicits a specific molecular chaperone response. Heat stress was able to provide an additional induction of cpn 60 and cpn 10 above that obtained for the @ state alone, indicating that these genes have separate regulatory elements for the specific mitochondrial and general stress responses. Since the mitochondrial-specific chaperones are encoded by nuclear DNA, there must be a mechanism for molecular communication between the mitochondrion and nucleus and this system can address how stress is communicated between these organelles.Keywords: molecular chaperone ; mitochondria; stress response; heat shock ; gene activation. Molecular chaperones are found in all of the major sub-celMar compartments and have been shown to play essential functions in the folding and subcellular targeting of proteins. In addition, the ability of cells to survive stresses such as elevated temperatures, exposure to heavy metals and amino acid analogues is dependent on the induction of molecular chaperones (re- chaperones are essential for cell viability [lo, 15-17]. The upregulation of mitochondrial chaperones in response to metabolic insults such as heat shock, glucose deprivation, amino acid analogues and agents that impair energy metabolism [ 18 -191, suggest that they also play an important role in maintaining homeostasis in mitochondria when a general stress is applied to the cell. However, it is not known if mitochondrial chaperones are induced specifically in response to the application of a selective stress to mitochondria.Chaperone synthesis can be regulated in part by modulation of the message stability and the frequency of translation initiation, but is regulated mainly through specific transcriptional factors termed heat-shock factors (reviewed in [20]). The binding of heat-shock factors to DNA regulatory sequences, called heat-shock elements, promotes the expression of heat-shock genes, and is thought to be modulated by a number of processes such as oligomerisation, phosphorylation and i...
Background: Our understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact.
Proanthocyanidins and anthocyanins are produced by closely related branches of the flavonoid pathway and utilize the same metabolic intermediates. Previous studies have shown a flexible mechanism of flux diversion at the branch-point between the anthocyanin and proanthocyanidin pathways, but the molecular basis for this mechanism is poorly understood. Floral tissues in white clover plants (Trifolium repens) produce both proanthocyanidins and anthocyanins. This makes white clover amenable to studies of proanthocyanidin and anthocyanin biosynthesis and possible interactions within the flavonoid pathway. Results of this study show that the anthocyanin and proanthocyanidin pathways are spatially colocalized within epidermal cells of petals and temporally overlap in partially open flowers. A correlation between spatiotemporal patterns of anthocyanin and proanthocyanidin biosynthesis with expression profiles of putative flavonoid-related genes indicates that these pathways may recruit different isoforms of flavonoid biosynthetic enzymes. Furthermore, in transgenic white clover plants with downregulated expression of the anthocyanidin reductase gene, levels of flavan 3-ols, anthocyanins, and flavonol glycosides and the expression levels of a range of genes encoding putative flavonoid biosynthetic enzymes and transcription factors were altered. This is consistent with the hypothesis that flux through the flavonoid pathway may be at least partially regulated by the availability of intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.