The ultraviolet and infrared spectroscopy of single conformations of neutral serotonin (5-hydroxytryptamine) have been studied in the gas phase using a combination of methods including laser-induced fluorescence, resonance-enhanced two-photon ionization, UV-UV hole-burning spectroscopy, and resonant ion-dip infrared spectroscopy. By comparison to its close analogue tryptamine, for which firm assignments to seven low-energy conformations have been made, UV and IR transitions due to eight conformations of serotonin are observed and assigned. The ultraviolet spectrum divides into two subsets of transitions separated from one another by approximately 230 cm-1 ascribable to syn and anti conformations of the 5-OH group. These two subsets are also distinguishable via their 5-OH stretch fundamentals, with the anti-OH subset shifted by approximately 4-5 cm-1 to lower frequency than those due to syn-OH conformers. The existing firm assignments for tryptamine play a decisive role in assignments in serotonin, where the alkyl CH stretch infrared spectrum is diagnostic of the conformation of the ethylamine side chain. Conformer A of serotonin (SERO(A)), with S1 <-- S0 origin transition at 32584 cm-1, is assigned to Gpy(out)/anti-OH, SERO(B) at 32548 cm-1 to Gpy(up)/anti, SERO(C) at 32545 cm-1 to Gph(out)/anti, SERO(D) at 32560 cm-1 to Anti(py)/anti, SERO(E) at 32537 cm-1 to Anti(up)/anti, SERO(F) at 32353 cm-1 to Gpy(out)/syn, SERO(G) at 32313 cm-1 to Gpy(up)/syn, and SERO(H) at 32282 cm-1 to Gph(out)/syn. The conformational preferences of serotonin differ from those of tryptamine most notably in the selective stabilization observed for the Gph(out)/anti-OH conformer SERO(C), which makes it the second-most intense transition in the ultraviolet spectrum, surpassed only by the Gpy(out)/anti-OH conformer SERO(A).
Neutral serotonin-(H(2)O)(n) clusters with n = 1,2 have been studied under jet-cooled conditions using a combination of resonant two-photon ionization (R2PI), UV-UV hole-burning (UVHB), and resonant ion-dip infrared (RIDIR) spectroscopy. Serotonin (5-hydroxytryptamine, SERO) is a close analogue of tryptamine, differing by the addition of an OH substituent in the 5-position on the indole ring, but sharing the same ethylamine side chain in the 3-position. Three conformational isomers of SERO-(H(2)O)(1) were observed via UVHB, with S(0)-S(1) origins at 32 671 (A), 32 454 (B), and 32 188 cm(-1) (C). RIDIR spectroscopy provided infrared spectra in the hydride stretch region that reflected the hydrogen-bonding arrangement of each conformer. Two of the three SERO-(H(2)O)(1) conformers have RIDIR spectra nearly identical to that of the only observed conformer of tryptamine-(H(2)O)(1), differing only in the orientation of the 5-OH group (syn vs anti). In this structure, the H(2)O molecule acts as H-bond donor to the NH(2) group on the ethylamine side chain, which is configured in the Gpy(out) conformation that is the global minimum in the absence of water. Comparison of the OH stretch RIDIR spectrum of the third SERO-(H(2)O)(1) conformer with calculation leads to its assignment to a structure in which the water molecule forms a H-bonded bridge between the amino group and the 5-OH group of SERO, with the ethylamine side chain in the Gph(out) conformation that facilitates bridge formation, corresponding to the second most populated conformer in the isolated SERO monomer. The OH and CH stretch infrared absorptions for the single observed conformer of SERO-(H(2)O)(2) indicate that it is also a bridge structure linking the NH(2) and OH groups of SERO, retaining the same Gph(out) ethylamine conformation as in conformer C of SERO-(H(2)O)(1). The ultraviolet and infrared spectroscopy reflect the fact that the single-water bridge cannot optimally span the gap between the 5-OH and NH(2) groups, while the water dimer bridge forms a set of three strong H-bonds that lock in the Gph(out) ethylamine and anti 5-OH orientations in a near-optimal configuration.
Stimulated emission pumping-population transfer (SEP-PT) and hole-filling (SEP-HF) spectroscopies were used to determine the energy thresholds to isomerization between thirteen reactant-product conformer pairs in the biomolecule serotonin (SERO). Serotonin is a close structural analog of tryptamine (TRA), differing in having a hydroxyl group in the 5 position of the indole ring. A previous spectroscopic study (LeGreve; et al. J. Am. Chem. Soc. 2007, 129 (13), 4028) identified eight conformational isomers of SERO, whose interconversion involves motion of the 3-ethylamine side chain, the 5-OH group, or both. In the cases in which only an ethylamine side chain reorientation occurred, the barriers were found to be similar to, but systematically somewhat smaller than, those in TRA, which has been studied by similar methods (Dian; et al. Science 2004, 303 (5661), 1169; Clarkson; et al. J. Chem. Phys. 2005, 122 (21), Art. No. 214311). In most cases, the experimental thresholds are well reproduced by calculated transition states separating the conformational wells; however, tunneling effects may artificially reduce the thresholds observed for isomerization of SERO(A,Gpy(out)) and SERO(B,Gpy(up)) into SERO(C,Gph(out)). The A --> A' isomerization involving only the OH rotation from anti to syn was found to be 721-761 cm-1, in accordance with the calculated classical barrier. For isomerizations in which the ethylamine side chain reorients as does the OH group, the barriers to isomerization were consistent with sequential rather than concerted motion of both groups. Finally, some evidence for mode-specific effects in the product quantum yields near threshold is presented.
The vibronic spectrum of tryptamine has been studied in a molecular beam up to an energy of 930 cm(-1) above the S(0)-S(1) electronic origin. Rotationally resolved electronic spectra reveal a rotation of the transition dipole moment direction from (1)L(b) to (1)L(a) beginning about 400 cm(-1) above the (1)L(b) origin. In this region, vibronic bands which appear as single bands at low resolution contain rotational structure from more than one vibronic transition. The number of these transitions closely tracks the total vibrational state density in the (1)L(b) electronic state as a function of internal energy. Dispersed fluorescence spectra show distinct spectroscopic signatures attributable to the (1)L(b) and (1)L(a) character of the mixed excited-state wave functions. The data set is used to extrapolate to a (1)L(a) origin about 400 cm(-1) above the (1)L(b) origin. DFT-MRCI calculations locate a conical intersection between these two states at about 900 cm(-1) above the L(a) origin, whose structure is located along a tuning coordinate which is close to a linear interpolation between the two excited-state geometries. Along the branching coordinate, there is no barrier from (1)L(a) to (1)L(b). A two-tier model for the vibronic coupling is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.