Chronic wasting disease is a prion disease affecting both free-ranging and farmed cervids in North America and Scandinavia. A range of cervid species have been found to be susceptible, each with variations in the gene for the normal prion protein, PRNP, reportedly influencing both disease susceptibility and progression in the respective hosts. Despite the finding of several different PRNP alleles in white-tailed deer, the majority of past research has focused on two of the more common alleles identified-the 96G and 96S alleles. In the present study, we evaluate both infection status and disease stage in nearly 2100 farmed deer depopulated in the United States and Canada, including 714 CWD-positive deer and correlate our findings with PRNP genotype, including the more rare 95H, 116G, and 226K alleles. We found significant differences in either likelihood of being found infected or disease stage (and in many cases both) at the time of depopulation in all genotypes present, relative to the most common 96GG genotype. Despite high prevalence in many of the herds examined, infection was not found in several of the reported genotypes. These findings suggest that additional research is necessary to more properly define the role that these genotypes may play in managing CWD in both farmed and free-ranging white-tailed deer, with consideration for factors including relative fitness levels, incubation periods, and the kinetics of shedding in animals with these rare genotypes.
Chronic wasting disease (CWD) is a rapidly spreading prion disorder affecting captive and free-ranging cervids. The zoonotic potential of CWD is unknown, as well as the mechanism for its highly efficient transmission. A top priority to minimize further spreading of this disease and its potential impact on environmental prion contamination is the development of a non-invasive, sensitive, and specific test for ante-mortem detection of infected animals. Here, we optimized the protein misfolding cyclic amplification (PMCA) assay for highly efficient detection of CWD prions in blood samples. Studies were done using a blind panel of 98 field-collected samples of whole blood from codon 96 glycine/glycine, captive white-tailed deer that were analyzed for prion infection post-mortem by immunohistochemistry (IHC). The results showed a sensitivity of 100% in animals with very poor body condition that were IHC-positive in both brain and lymph nodes, 96% in asymptomatic deer IHC-positive in brain and lymph nodes and 53% in animals at early stages of infection that were IHC-positive only in lymph nodes. The overall mean diagnostic sensitivity was 79.3% with 100% specificity. These findings show that PMCA might be useful as a blood test for routine, live animal diagnosis of CWD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.