Alumina and aluminosilicate aerogels offer potential for use at temperatures above 700°C, where silica aerogels begin to sinter. Stability of alumina and aluminosilicate pore structures at high temperatures is governed by the starting aerogel structure, which, in turn is controlled by the synthesis route. Structure, morphology, and crystallization behavior are compared for aerogels synthesized from AlCl 3 and propylene oxide with those synthesized from a variety of boehmite precursors. The aerogels possessing a crystalline boehmite structure in the as-synthesized condition retained mesoporous structures to temperatures of 1200°C, while the AlCl 3 -derived aerogels, although exhibiting higher as-synthesized surface areas, crystallized and densified at 980-1005°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.