The pathogenesis of diabetic nephropathy remains poorly defined, and animal models that represent the human disease have been lacking. It was demonstrated recently that the severe endothelial dysfunction that accompanies a diabetic state may cause an uncoupling of the vascular endothelial growth factor (VEGF)-endothelial nitric oxide (eNO) axis, resulting in increased levels of VEGF and excessive endothelial cell proliferation. It was hypothesized further that VEGF-NO uncoupling could be a major contributory mechanism that leads to diabetic vasculopathy. For testing of this hypothesis, diabetes was induced in eNO synthase knockout mice (eNOS KO) and C57BL6 controls. Diabetic eNOS KO mice developed hypertension, albuminuria, and renal insufficiency with arteriolar hyalinosis, mesangial matrix expansion, mesangiolysis with microaneurysms, and Kimmelstiel-Wilson nodules. Glomerular and peritubular capillaries were increased with endothelial proliferation and VEGF expression. Diabetic eNOS KO mice showed increased mortality at 5 mo. All of the functional and histologic changes were improved with insulin therapy. Inhibition of eNO predisposes mice to classic diabetic nephropathy. The mechanism likely is due to VEGF-NO uncoupling with excessive endothelial cell proliferation coupled with altered autoregulation consequent to the development of preglomerular arteriolar disease. Endothelial dysfunction in human diabetes is common, secondary to effects of glucose, advanced glycation end products, C-reactive protein, uric acid, and oxidants. It was postulated that endothelial dysfunction should predict nephropathy and that correction of the dysfunction may prevent these important complications.
alpha1-Antitrypsin (AAT) deficiency is a single-gene disorder in which a mutation in the AAT (approved symbol SERPINA1) gene (PI*Z) leads to misfolding of the protein, loss of the protective antiprotease effect of AAT for the lungs, and a toxic effect on hepatocytes. Optimal therapy for AAT deficiency will require a high percentage of hepatocyte transduction to be effective for liver and lung disease. Recently, rAAV genomes pseudotyped with capsids from serotypes 7 and 8 showed efficient hepatic transduction. We hypothesized that upon portal vein injection to target hepatocytes, serotype 8 would better transduce target cells and therefore express hAAT in both a greater percentage of cells and greater amounts. AAV2 and pseudotyped vectors for serotypes 1, 5, and 8 carrying the human AAT transgene were injected at 1 x 10(10) particle doses into C57Bl/6 mice. Circulating hAAT from AAV2/8-injected animals showed a 2-log advantage over AAV2 and 3-log increase over AAV2/1 and 5 for the 24-week study. Most significantly, up to 40% of total liver cells stained positive for the transgene in AAV2/8 subjects while remaining primarily episomal. Therefore, pseudotyped AAV8 provides a vehicle to infect a high percentage of hepatocytes stably and thereby express therapeutic molecules to modify AAT PiZ transcripts.
Gene transfer into pancreatic cells in vivo could be of immense therapeutic benefit in cases of type 1 diabetes (T1D) through the production of molecules capable of interrupting the progression of autoimmunity or promoting regeneration of insulin-secreting beta cells. We adapted a clinically relevant surgical technique (endoscopic retrograde cholangiopancreatography) to deliver rAAV encoding human alpha1-antitrypsin (approved gene symbol SERPINA1) to the pancreas of 3-week-old Fisher 344 rats and C57BL/6 mice. We compared natural as well as bioengineered serotypes of rAAV (rAAV1, rAAV2/Apo, rAAV8) as well as different promoters (chicken beta-actin, human insulin) for their expression in vivo. Rats injected with rAAV1 showed the highest hAAT expression (week 2, rAAV1/CB-AT, 579 +/- 457 ng/ml). In mice, rAAV8 vector delivered the highest serum concentration of hAAT (week 2, rAAV8/CB-AT, 19 +/- 6 microg/ml). The chicken beta-actin promoter provided the highest expression in both rodent experiments. Immunohistochemical staining indicated transduction primarily of pancreatic acinar cells with either the rAAV1/CB-AT vector in the rat or the rAAV8/CB-AT vector in the mouse. This study demonstrates that rAAV vectors can be designed to deliver therapeutic genes efficiently to the pancreas and achieve high levels of gene expression and may be useful in treating pancreatic disorders, including T1D.
Infections with respiratory pathogens such as respiratory syncytial virus and rhinovirus have been associated with the development of long-term chronic airway disease. To better understand the events responsible for this clinical outcome, a rodent model of virus-induced chronic airway disease has been characterized. Upon infection with Sendai virus (parainfluenza virus type-1), Brown Norway (BN) rats develop an asthma-like clinical syndrome, while Fischer 344 (F344) rats fully recover. Our previous studies demonstrated that after infection, tumor necrosis factor-alpha (TNF-alpha) expression is substantially higher in BN rats compared to F344 rats, and this may at least partially mediate the virus-induced airway abnormalities. To investigate the underlying mechanism(s) for the increased TNF-alpha expression, the role of nuclear factor-kappaB (NF-kappaB), an important regulator of TNF-alpha gene transcription, was examined. Supershift electrophoretic mobility shift assays (EMSAs) indicate that normal F344 rats predominantly express the p65 subunit of NF-kappaB in the lungs, and virus infection temporarily increases expression of the p50 subunit. In contrast, normal BN rats have higher expression of the p50 subunit in the pulmonary tract. Upon infection, p50-subunit expression in BN rats increases to levels higher than those observed in virus-infected F344 rats. Interestingly, treatment of infected BN rats with dexamethasone at doses known to prevent virus-induced airway abnormalities increases pulmonary expression of the p65 subunit, and decreases TNF-alpha mRNA levels in the lungs. Furthermore, direct inhibition of TNF-alpha also increases pulmonary expression of p65 in virus-infected BN, but not F344, rats. Taken together, these results suggest that differential expression of NF-kappaB subunits may play an important role in the development of post-viral chronic airway abnormalities.
Mouse antithymocyte globulin (mATG) prevents, as well as reverses, type 1 diabetes in NOD mice, through mechanisms involving modulation of the immunoregulatory activities of T lymphocytes. Dendritic cells (DC) play a pivotal role in the generation of T cell responses, including those relevant to the autoreactive T cells enabling type 1 diabetes. As Abs against DC are likely generated during production of mATG, we examined the impact of this preparation on the phenotype and function of DC to elucidate novel mechanisms underlying its beneficial activities. In vivo, mATG treatment transiently induced the trafficking of mature CD8− predominant DC into the pancreatic lymph node of NOD mice. Splenic DC from mATG-treated mice also exhibited a more mature phenotype characterized by reduced CD8 expression and increased IL-10 production. The resultant DC possessed a potent capacity to induce Th2 responses when cultured ex vivo with diabetogenic CD4+ T cells obtained from BDC2.5 TCR transgenic mice. Cotransfer of these Th2-deviated CD4+ T cells with splenic cells from newly diabetic NOD mice into NOD.RAG−/− mice significantly delayed the onset of diabetes. These studies suggest the alteration of DC profile and function by mATG may skew the Th1/Th2 balance in vivo and through such actions, represent an additional novel mechanism by which this agent provides its beneficial activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.