Purpose: The application of induced pluripotent stem cell-derived retinal pigmented epithelium (iPSC-RPE) in patients with retinal degenerative disease is making headway toward the clinic, with clinical trials already underway. Multiple groups have developed methods for RPE differentiation from pluripotent cells, but previous studies have shown variability in iPSC propensity to differentiate into RPE. Methods: This study provides a comparison between 2 different methods for RPE differentiation: (1) a commonly used spontaneous continuously adherent culture (SCAC) protocol and (2) a more rapid, directed differentiation using growth factors. Integration-free iPSC lines were differentiated to RPE, which were characterized with respect to global gene expression, expression of RPE markers, and cellular function. Results: We found that all 5 iPSC lines (iPSC-1, iPSC-2, iPSC-3, iPSC-4, and iPSC-12) generated RPE using the directed differentiation protocol; however, 2 of the 5 iPSC lines (iPSC-4 and iPSC-12) did not yield RPE using the SCAC method. Both methods can yield bona fide RPE that expresses signature RPE genes and carry out RPE functions, and are similar, but not identical to fetal RPE. No differences between methods were detected in transcript levels, protein localization, or functional analyses between iPSC-1-RPE, iPSC-2-RPE, and iPSC-3-RPE. Directed iPSC-3-RPE showed enhanced transcript levels of RPE65 compared to directed iPSC-2-RPE and increased BEST1 expression and pigment epithelium-derived factor (PEDF) secretion compared to directed iPSC-1-RPE. In addition, SCAC iPSC-3-RPE secreted more PEDF than SCAC iPSC-1-RPE. Conclusions: The directed protocol is a more reliable method for differentiating RPE from various pluripotent sources and some iPSC lines are more amenable to RPE differentiation.
Soft tissue defects are relatively common, yet currently used reconstructive treatments have varying success rates, and serious potential complications such as unpredictable volume loss and reabsorption. Human adipose-derived stem cells (ASCs), isolated from liposuction aspirate have great potential for use in soft tissue regeneration, especially when combined with a supportive scaffold. To design scaffolds that promote differentiation of these cells down an adipogenic lineage, we characterized changes in the surrounding extracellular environment during adipogenic differentiation. We found expression changes in both extracellular matrix proteins, including increases in expression of collagen-IV and vitronectin, as well as changes in the integrin expression profile, with an increase in expression of integrins such as aVb5 and a1b1. These integrins are known to specifically interact with vitronectin and collagen-IV, respectively, through binding to an Arg-Gly-Asp (RGD) sequence. When three different short RGD-containing peptides were incorporated into three-dimensional (3D) hydrogel cultures, it was found that an RGD-containing peptide derived from vitronectin provided strong initial attachment, maintained the desired morphology, and created optimal conditions for in vitro 3D adipogenic differentiation of ASCs. These results describe a simple, nontoxic encapsulating scaffold, capable of supporting the survival and desired differentiation of ASCs for the treatment of soft tissue defects.
Whole blood fibrin clots capture platelets and release growth factors, and the addition of ASCs increases VEGF release for up to 2 weeks after clot formation. This suggests that whole blood fibrin clots may be a viable scaffold and delivery vehicle for future stem cell treatments.
One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration.
In a phase 1b study of acalabrutinib (a covalent Bruton tyrosine kinase (BTK) inhibitor) in combination with vistusertib (a dual mTORC1/2 inhibitor) in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), multiple ascending doses of the combination as intermittent or continuous schedules of vistusertib were evaluated. The overall response rate was 12% (3/25). The pharmacodynamic (PD) profile for acalabrutinib showed that BTK occupancy in all patients was >95%. In contrast, PD analysis for vistusertib showed variable inhibition of phosphorylated 4EBP1 (p4EBP1) without modulation of AKT phosphorylation (pAKT). The pharmacokinetic (PK)/ PD relationship of vistusertib was direct for TORC1 inhibition (p4EBP1) but did not correlate with TORC2 inhibition (pAKT). Cell-of-origin subtyping or next-generation sequencing did not identify a subset of DLBCL patients with clinical benefit; however, circulating tumor DNA dynamics correlated with radiographic response. These data suggest that vistusertib does not modulate targets sufficiently to add to the clinical activity of acalabrutinib monotherapy. Clinicaltrials.gov identifier: NCT03205046.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.