Purpose
Determine if pre-treatment biomarkers obtained from Diffuse Optical Spectroscopic Tomographic (DOST) imaging predict breast tumor response to Neoadjuvant Chemotherapy (NAC), which would have value to potentially eliminate delays in prescribing definitive local regional therapy that may occur from a standard complete 6–8 months course of NAC.
Experimental design
Nineteen patients undergoing NAC were imaged with DOST before, during and after treatment. The DOST images of total hemoglobin concentration (HbT), tissue oxygen saturation (StO2), and water (H2O) fraction at different time points have been used for testing the abilities of differentiating patients having pathologic complete response (pCR) vs. pathologic incomplete response (pIR).
Results
Significant differences (P-value<0.001, AUC=1.0) were found between pCR patients vs. pIR in outcome, based on the percentage change in tumor HbT within the first cycle of treatment. In addition, pre-treatment tumor HbT (Pre-TxHbT) relative to the contralateral breast was statistically significant (p-value=0.01, AUC=0.92) in differentiating pCR from pIR.
Conclusions
This is the first clinical evidence that DOST HbT may differentiate the two groups with predictive significance based on data acquired before NAC even begins. The study also demonstrates the potential of accelerating the validation of optimal NAC regimens through future randomized clinical trials by reducing the number of patients required and the length of time they need to be followed by using a validated imaging surrogate as an outcome measure.
Abstract. The dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively. Using this inspired gas manipulation sequence, an individual case study of a subject with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NAC) was analyzed. Dynamic NIRS imaging was performed at different time points during treatment. The maximum tumor dynamic changes in deoxy-hemoglobin increased from less than 7% at cycle 1, day 5 (C1, D5) to 17% at (C1, D28), which indicated a complete response to NAC early during treatment and was subsequently confirmed pathologically at the time of surgery.
Adjunct magnetic resonance imaging (MRI) for both screening high‐risk patients and staging for patients with newly diagnosed breast cancer leads to an increased number of biopsies and increased detection of atypical lesions. We assessed whether the malignancy upgrade frequency for high‐risk atypia identified via MRI‐guided biopsies varied based on indication: high‐risk screening vs staging for malignancy. Among 399 MRI‐guided biopsies, 46 (11.5%) high‐risk lesions (ADH, ALH, and LCIS) were identified. Surgical excision was performed on 37% of 46%, and 24.3% were upgraded to invasive malignancy or DCIS. Of lesions identified by staging MRI, a slightly higher percentage, 28.5%, were upgraded (P = .36). Our data suggest that surgeons should carefully consider excisional biopsy for atypia identified on MRI regardless of indication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.