Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. A rare Mendelian syndrome, pseudohypoaldosteronism type II (PHAII), featuring hypertension, hyperkalemia, and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption versus K+ and H+ excretion1. We used exome sequencing to identify mutations in Kelch-like 3 (KLHL3) or Cullin 3 (CUL3) in 41 PHAII kindreds. KLHL3 mutations are either recessive or dominant, while CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-Kelch proteins such as KLHL3 are components of Cullin/RING E3 ligase complexes (CRLs) that ubiquitinate substrates bound to Kelch propeller domains2–8. Dominant KLHL3 mutations are clustered in short segments within the Kelch propeller and BTB domains implicated in substrate9 and Cullin5 binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter (NCC) in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3/CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite combined complexities of locus heterogeneity, mixed models of transmission, and frequent de novo mutation, and establish a fundamental role for KLHL3/CUL3 in blood pressure, K+, and pH homeostasis.
Angiotensin type 2 receptor gene null mutant mice display congenital anomalies of the kidney and urinary tract (CAKUT). Various features of mouse CAKUT impressively mimic human CAKUT. Studies of the human type 2 receptor (AGTR2) gene in two independent cohorts found that a significant association exists between CAKUT and a nucleotide transition within the lariat branchpoint motif of intron 1, which perturbs AGTR2 mRNA splicing efficiency. AGTR2, therefore, has a significant ontogenic role for the kidney and urinary tract system. Studies revealed that the establishment of CAKUT is preceded by delayed apoptosis of undifferentiated mesenchymal cells surrounding the urinary tract during key ontogenic events, from the ureteral budding to the expansive growth of the kidney and ureter.
The Oxford Classification of IgA nephropathy (IgAN) includes the following four histologic components: mesangial (M) and endocapillary (E) hypercellularity, segmental sclerosis (S) and interstitial fibrosis/tubular atrophy (T). These combine to form the MEST score and are independently associated with renal outcome. Current prediction and risk stratification in IgAN requires clinical data over 2 years of follow-up. Using modern prediction tools, we examined whether combining MEST with cross-sectional clinical data at biopsy provides earlier risk prediction in IgAN than current best methods that use 2 years of follow-up data. We used a cohort of 901 adults with IgAN from the Oxford derivation and North American validation studies and the VALIGA study followed for a median of 5.6 years to analyze the primary outcome (50% decrease in eGFR or ESRD) using Cox regression models. Covariates of clinical data at biopsy (eGFR, proteinuria, MAP) with or without MEST, and then 2-year clinical data alone (2-year average of proteinuria/MAP, eGFR at biopsy) were considered. There was significant improvement in prediction by adding MEST to clinical data at biopsy. The combination predicted the outcome as well as the 2-year clinical data alone, with comparable calibration curves. This effect did not change in subgroups treated or not with RAS blockade or immunosuppression. Thus, combining the MEST score with cross-sectional clinical data at biopsy provides earlier risk prediction in IgAN than our current best methods.
Since the renin angiotensin system (RAS) is established as an important factor in renal disease progression, we determined whether RAS alleles that have been linked to variability in outcome in several cardiovascular diseases also affect progression of IgA nephropathy. These genetic variants include: (1) angiotensin I converting enzyme deletion polymorphism in intron 16 (ACE I/D), reported to be associated with increased risk of myocardial infarction as well as left ventricular hypertrophy; (2) a point mutation in the angiotensinogen (Agt) gene resulting in a methionine to threonine substitution at residue 235 (M235T), reported to be associated with hypertension in Caucasians; and (3) an angiotensin receptor type I (ATR) A to C transition at bp 1166 (A1166C) which shows synergy with the deleterious effects of the ACE DD genotype in myocardial infarction. We examined these polymorphisms by PCR amplification of genomic DNA samples from 64 Caucasian patients in the USA (age 6 to 83 years) with biopsy-proven IgA nephropathy whose renal status was followed for an average of almost seven years. Patients who presented with and maintained normal serum creatinine (Cr, < 1.5 mg/dl), had ACE genotype frequencies of II:35%, ID:61%, DD:4%. By contrast, in patients with progression (initially normal Cr increased to a mean of 4.5 +/- 0.86 mg/dl), ACE genotype frequencies were II:22%, ID:44%, DD:33% (P = 0.057 by Fishers's exact test, vs. non-progressors). The association of the DD genotype with progression was even more striking when patients with other risk factors (hypertension and/or heavy proteinuria) were excluded. In this subgroup, the genotype frequencies in patients with stable creatinine versus those with deterioration in renal function was 53%, 47%, and 0% versus 0%, 40%, and 60%, respectively, for II, ID, and DD genotypes (P = 0.009 by Fisher's exact test, progressors vs. non-progressors). Further, sequence analysis of the I gene polymorphism revealed a potential 13 bp silence motif. Neither the Agt 235T nor the ATR A 1166C gene variants, however, was associated with deterioration of renal function. Taken together, these results indicate that, although polymorphism in each of the three genes in the RAS system has been linked to cardiovascular diseases, only the ACE I/D polymorphism is associated with progressive deterioration in renal function in IgA nephropathy. Since previous observations link ACE polymorphism with ACE activity, these findings imply a widespread importance of ACE in modulating destructive processes in different organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.