Polycyclic aromatic hydrocarbons (PAHs), derived largely from fossil fuels and their combustion, are pervasive contaminants in rivers, lakes, and nearshore marine habitats. Studies after the Exxon Valdez oil spill demonstrated that fish embryos exposed to low levels of PAHs in weathered crude oil develop a syndrome of edema and craniofacial and body axis defects. Although mechanisms leading to these defects are poorly understood, it is widely held that PAH toxicity is linked to aryl hydrocarbon receptor (AhR) binding and cytochrome P450 1A (CYP1A) induction. Using zebrafish embryos, we show that the weathered crude oil syndrome is distinct from the well-characterized AhR-dependent effects of dioxin toxicity. Blockade of AhR pathway components with antisense morpholino oligonucleotides demonstrated that the key developmental defects induced by weathered crude oil exposure are mediated by low-molecular-weight tricyclic PAHs through AhR-independent disruption of cardiovascular function and morphogenesis. These findings have multiple implications for the assessment of PAH impacts on coastal habitats.
The Deepwater Horizon oil spill constituted an ecosystem-level injury in the northern Gulf of Mexico. Much oil spread at 1100-1300m depth, contaminating and affecting deepwater habitats. Factors such as oil-biodegradation, ocean currents and response measures (dispersants, burning) reduced coastal oiling. Still, >2100km of shoreline and many coastal habitats were affected. Research demonstrates that oiling caused a wide range of biological effects, although worst-case impact scenarios did not materialize. Biomarkers in individual organisms were more informative about oiling stress than population and community indices. Salt marshes and seabird populations were hard hit, but were also quite resilient to oiling effects. Monitoring demonstrated little contamination of seafood. Certain impacts are still understudied, such as effects on seagrass communities. Concerns of long-term impacts remain for large fish species, deep-sea corals, sea turtles and cetaceans. These species and their habitats should continue to receive attention (monitoring and research) for years to come.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.