Vapor movement of synthetic auxin herbicides can injure desirable plants outside the treatment zone. Vapor movement of the synthetic auxin herbicides aminocyclopyrachlor and aminocyclopyrachlor methyl was compared with that of the relatively volatile herbicide dicamba and the low volatile herbicide aminopyralid with a soybean bioassay under greenhouse and field conditions. Soybean is very sensitive to these active ingredients. Under greenhouse conditions, 82 (61 to 104) mg ae ha−1of aminocyclopyrachlor, 26 (18 to 33) mg ae ha−1of aminocyclopyrachlor methyl, 82 (69 to 95) mg ae ha−1of aminopyralid, and 61 (47 to 75) mg ae ha−1of dicamba produced an estimated 25% visual soybean phytotoxicity response when soybean was treated POST at the V3 growth stage (GR25[95% confidence interval]). In field studies, aminocyclopyrachlor, aminocyclopyrachlor methyl, and aminopyralid were applied at 70 g ae ha−1and dicamba was applied at 560 g ae ha−1(labeled application rates) to soybean at the V3 growth stage. All herbicides were applied within an enclosed chamber (3 m by 3 m by 1 m) to mitigate movement of spray droplets. The enclosures were removed shortly after spray application and soybean response immediately surrounding the treated area was recorded in each of eight directions approximately 10 d after treatment. On the basis of bioassay responses, relative amount of vapor movement was dicamba > aminocyclopyrachlor methyl > aminopyralid ≈ aminocyclopyrachlor. Vapor movement of aminocyclopyrachlor was very low indicating that the risk of phytotoxic response of sensitive plants due to volatility of aminocyclopyrachlor is negligible.
Background Activation of coagulation by expression of tissue factor (TF) in the airspace is a hallmark of acute lung injury (ALI) but the timing of TF activation in relationship to increases in lung permeability and inflammation are unknown. Methods To test the hypothesis that TF is upregulated early in the course of acute bleomycin lung injury and precedes increased permeability and inflammation we studied the early course of bleomycin-induced ALI in mice. Mice were treated with 0.04U intratracheal bleomycin or vehicle control and bronchoalveolar lavage (BAL) and lung tissue were collected daily for 7 days. Whole lung TF mRNA was determined by QT-PCR. TF protein was assessed by ELISA and immunostaining. BAL procoagulant activity was measured by BAL clot time and thrombin-antithrombin complexes. Inflammation was assessed by BAL cell count, differentials and CXCL1/KC concentration. Lung permeability was assessed by BAL protein and lung wet to dry weight ratio. Results Expression of CXCL1 occurred by day 1. BAL protein and lung wet-to-dry weight ratio increased significantly by day 3. TF mRNA and BAL procoagulant activity peaked on day 4 while whole lung TF protein peaked on day 6. Changes in permeability and procoagulant activity preceded inflammatory cell influx which was maximal at day 6 while whole lung TF protein peaked along with inflammation. Conclusion These data demonstrate that cytokine upregulation is the earliest response to bleomycin administration, followed by increased lung permeability, upregulation of TF, and recruitment of inflammatory cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.