The regulation of the subclass of immunoglobulin secreted by B cells has been studied in vitro in polyclonal systems using mitogens, such as lipopolysaccharide (LPS), to bypass the requirement for cognate interaction between antigen-specific T and B cells. In these systems, interleukin-(IL)-4 induces the secretion of IgG1 (ref. 1) and IgE (ref. 2); IL-5 enhances the secretion of IgA, and interferon-gamma (IFN-gamma) enhances the secretion of IgG2a (ref. 5). Clones of murine TH cells can be divided into two subsets, TH1 and TH2 (ref. 6). Both subsets synthesize IL-3 and granulocyte-monocyte colony-stimulating factor (GM-CSF), but only TH1 clones produce IL-2, IFN-gamma, and lymphotoxin (LT) and TH2 clones produce IL-4 and IL-5 (ref. 7). We have examined the role of clones of antigen-specific TH1 and TH2 cells in the regulation of the subclasses of IgG antibody secreted by antigen-specific B cells. Our results show that both types of TH cells induce the secretion of IgM and IgG3, whereas clones of TH1 and TH2 cells specifically induce antigen-specific B cells to secrete IgG2a and IgG1, respectively. We also demonstrate that regulation of commitment to the secretion of a particular IgG isotype occurs in two distinct stages: cognate interaction between T and B cells and interaction between T-cell-derived lymphokines and B cells.
Background-Omega-3 fatty acids (FAs) appear to reduce the risk of sudden death from myocardial infarction. This reduction is believed to occur via the incorporation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) into the myocardium itself, altering the dynamics of sodium and calcium channel function. The extent of incorporation has not been determined in humans. Methods and Results-We first determined the correlation between red blood cell (RBC) and cardiac omega-3 FA levels in 20 heart transplant recipients. We then examined the effects of 6 months of omega-3 FA supplementation (1 g responses among tissues were not significantly different). Conclusions-Although any of the tissues examined could serve as a surrogate for cardiac omega-3 FA content, RBC EPAϩDHA was highly correlated with cardiac EPAϩDHA; the RBC omega-3 response to supplementation was similar to that of the heart; RBCs are easily collected and analyzed; and they have a less variable FA composition than plasma. Therefore, RBC EPAϩDHA (also called the Omega-3 Index) may be the preferred surrogate for cardiac omega-3 FA status.
Although brain natriuretic peptide (BNP) of myocardial origin is important in cardiovascular and renal function and as a marker of cardiac dysfunction, the expression of BNP in atrial and ventricular myocardium remains controversial both under normal conditions and in heart failure. We therefore determined left atrial and left ventricular (LV) gene expression and tissue concentration as well as circulating BNP during the evolution of rapid ventricular pacing-induced congestive heart failure (CHF) in the dog. Early LV dysfunction after 10 days of pacing was characterized by impaired LV function but maintained arterial pressure, and overt CHF after 38 days of pacing was characterized by further impaired LV function and decreased systemic arterial pressure. Under normal conditions, cardiac BNP mRNA and cardiac tissue BNP were of atrial origin. In early LV dysfunction, BNP mRNA and tissue BNP were markedly increased in the left atrium in association with an increase in circulating BNP but remained below or at the limit of detection in the LV. In overt CHF, BNP mRNA was further increased in the left atrium and first increased in the LV, together with an increase in LV tissue BNP and a further increase in circulating BNP. In the progression of CHF, early LV dysfunction is characterized by a selective increase in atrial BNP expression in association with increased circulating BNP. Overt CHF is characterized by an additional recruitment of ventricular BNP expression and a further increase in circulating BNP. These studies provide important new insight into the local and temporal regulation of cardiac BNP gene expression during the progression of heart failure and underscore the predominant endocrine role of atrial myocardium under normal conditions and in early LV dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.