BackgroundCanine T‐cell lymphoma (TCL) is clinically and histologically heterogeneous with some forms, such as T‐zone lymphoma (TZL), having an indolent course. Immunophenotyping is an important tool in the classification of TCL in people, and can be equally useful in dogs.Hypothesis/ObjectivesWe hypothesized that loss of expression of the CD45 antigen is a specific diagnostic feature of TZL.AnimalsTwenty dogs with concurrent histology and immunophenotyping by flow cytometry were studied in depth. An additional 494 dogs diagnosed by immunophenotyping were used to characterize the population of dogs with this disease.MethodsLymph node biopsies from 35 dogs with TCL were classified by 2 pathologists using WHO criteria. Twenty lymph nodes were from dogs with CD45− TCL and 15 were from CD45+ TCL. The pathologists were blinded to the flow cytometry findings. Outcome information was sought for the 20 dogs with CD45− lymphoma, and population characteristics of the additional 494 dogs were described.ResultsAll 20 CD45− cases were classified as TZL. The 15 CD45+ cases were classified as aggressive TCL and are described in an accompanying paper. TZL cases had a median survival of 637 days. Examination of 494 additional dogs diagnosed with TZL by immunophenotyping demonstrated that 40% of cases are in Golden Retrievers, are diagnosed at a median age of 10 years, and the majority have lymphadenopathy and lymphocytosis.Conclusions TZL has unique immunophenotypic features that can be used for diagnosis.
Chronic bacterial infections associated with biofilm formation are often difficult to resolve without extended courses of antibiotic therapy. Mesenchymal stem cells (MSC) exert antibacterial activity in vitro and in acute bacterial infection models, but their activity in chronic infection with biofilm models has not been previously investigated. Therefore, we studied the effects of MSC administration in mouse and dog models of chronic infections associated with biofilms. Mice with chronic Staphylococcus aureus implant infections were treated by i.v. administration of activated or non-activated MSC, with or without antibiotic therapy. The most effective treatment protocol was identified as activated MSC co-administered with antibiotic therapy. Activated MSC were found to accumulate in the wound margins several days after i.v. administration. Macrophages in infected tissues assumed an M2 phenotype, compared to untreated infections which contained predominately M1 macrophages. Bacterial killing by MSC was found to be mediated in part by secretion of cathelicidin and was significantly increased by antibiotics. Studies in pet dogs with spontaneous chronic multi drug-resistant wound infections demonstrated clearance of bacteria and wound healing following repeated i.v. administration of activated allogeneic canine MSC. Thus, systemic therapy with activated MSC may be an effective new, non-antimicrobial approach to treatment of chronic, drug-resistant infections.
IntroductionAdministration of mesenchymal stem cells (MSCs) has been shown to improve renal function in rodent models of chronic kidney disease (CKD), in part by reducing intrarenal inflammation and suppressing fibrosis. CKD in cats is characterized by tubulointerstitial inflammation and fibrosis, and thus treatment with MSCs might improve renal function and urinary markers of inflammation in this disease. Therefore, a series of pilot studies was conducted to assess the safety and efficacy of intravenous administration of allogeneic adipose-derived MSCs (aMSCs) in cats with naturally occurring CKD.MethodsCats enrolled in these studies received an intravenous infusion of allogeneic aMSCs every 2 weeks collected from healthy, young, specific pathogen-free cats. Cats in pilot study 1 (six cats) received 2 × 106 cryopreserved aMSCs per infusion, cats in pilot study 2 (five cats) received 4 × 106 cryopreserved aMSCs per infusion, and cats in pilot study 3 (five cats) received 4 × 106 aMSCs cultured from cryopreserved adipose. Serum biochemistry, complete blood count, urinalysis, urine protein, glomerular filtration rate, and urinary cytokine concentrations were monitored during the treatment period. Changes in clinical parameters were compared statistically by means of repeated measures analysis of variance (ANOVA) followed by Bonferroni’s correction.ResultsCats in pilot study 1 had few adverse effects from the aMSC infusions and there was a statistically significant decrease in serum creatinine concentrations during the study period, however the degree of decrease seems unlikely to be clinically relevant. Adverse effects of the aMSC infusion in cats in pilot study 2 included vomiting (2/5 cats) during infusion and increased respiratory rate and effort (4/5 cats). Cats in pilot study 3 did not experience any adverse side effects. Serum creatinine concentrations and glomerular filtration rates did not change significantly in cats in pilot studies 2 and 3.ConclusionsAdministration of cryopreserved aMSCs was associated with significant adverse effects and no discernible clinically relevant improvement in renal functional parameters. Administration of aMSCs cultured from cryopreserved adipose was not associated with adverse effects, but was also not associated with improvement in renal functional parameters.
The feasibility of autologous intrarenal mesenchymal stem cell (MSC) therapy in cats with chronic kidney disease (CKD) was investigated. Six cats (two healthy, four with CKD) received a single unilateral intrarenal injection of autologous bone marrow-derived or adipose tissue-derived MSC (bmMSC or aMSC) via ultrasound guidance. Minimum database and glomerular filtration rate (GFR) via nuclear scintigraphy were determined pre-injection, at 7 days and at 30 days post-injection. Intrarenal injection did not induce immediate or long-term adverse effects. Two cats with CKD that received aMSC experienced modest improvement in GFR and a mild decrease in serum creatinine concentration. Despite the possible benefits of intrarenal MSC injections for CKD cats, the number of sedations and interventions required to implement this approach would likely preclude widespread clinical application. We concluded that MSC could be transferred safely by ultrasound-guided intrarenal injection in cats, but that alternative sources and routes of MSC therapy should be investigated.
While administration of MSC culture expanded from cryopreserved adipose was not associated with adverse effects, significant improvement in renal function was not observed immediately after administration. Long-term follow-up is necessary to determine whether MSC administration affects disease progression in cats with CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.