A high-resolution late-Holocene sea-level record is produced from salt-marsh deposits at Viðarhó lmi in Snaefellsnes, western Iceland. The stratigraphy of Viðarhó lmi saltmarsh is documented using detailed descriptions of ten exposed sections and numerous hand-drilled cores. Fossil foraminifera are used as proxy sea-level indicators in an exposed section of salt-marsh peat. The agglutinated foraminifera Jadammina macrescens and Paratrochammina (Lepidoparatrochammina) haynesi are most useful as sea-level indicators because of their narrow vertical extent on the marsh surface and their good preservation in the peaty marsh deposits. We collected compaction-free sea-level index points from salt-marsh peat directly overlying the bedrock surface to establish the pre-industrial millennial-scale trend of sea-level rise and evaluate effects of autocompaction on the stratigraphy. The chronology of the sea-level reconstruction is based on tephra stratigraphy, AMS 14 C, 137 Cs, Pb and palaeomagnetic analyses. The main tephra layer visible in the stratigraphy of Viðarhó lmi salt marsh is the Landnám (settlement) layer, previously dated to AD 8759/6. A sea-transported pumice layer was correlated to the 'Mediaeval Layer' of AD 1226/27. Our reconstruction indicates that relative sea level along the coast of western Iceland has risen by about 1.3 m since c. AD 100. The detrended sea-level record shows a slow rise between AD 100 and 500, followed by a slow downward trend reaching a lowstand in the first half of the nineteenth century. This falling trend is consistent with a steric change estimated from reconstructions of sea-surface and sea-bottom temperatures from shelf sediments off Northern Iceland. The sea-level record shows a marked recent rise of about 0.4 m that commenced AD 18209/20 as dated by palaeomagnetism and Pb produced by European coal burning. This rapid sea-level rise is interpreted to be related to global temperature rise. The rise has continued up to the present day and has also been measured, since 1957, by the Reykjavik tide gauge.
In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007–2010. The MAR, 3,704,404 km2 in area, accounts for 44.7% lower bathyal habitat (800–3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.
Sediment and water can potentially be altered, chemically, physically and biologically as they are sampled at the seafloor, brought to the surface, processed and analysed. As a result, in situ observations of relatively undisturbed systems have become the goal of a growing body of scientists. Our understanding of sediment biogeochemistry and exchange fluxes was revolutionized by the introduction of benthic chambers and in situ micro-electrode profilers that allow for the direct measurement of chemical fluxes between sediment and water at the sea floor and for porewater composition. Since then, rapid progress in the technology of in situ sensors and benthic chambers (such as the introduction of gel probes, voltammetric electrodes or one- and two-dimensional optodes) have yielded major breakthroughs in the scientific understanding of benthic biogeochemistry. This paper is a synthesis of discussions held during the workshop on sediment biogeochemistry at the "Benthic Dynamics: in situ surveillance of the sediment-water interface" international conference (Aberdeen, UK--March 25-29, 2002). We present a review of existing in situ technologies for the study of benthic biogeochemistry dynamics and related scientific applications. Limitations and possible improvement (e.g., technology coupling) of these technologies and future development of new sensors are discussed. There are countless important scientific and technical issues that lend themselves to investigation using in situ benthic biogeochemical assessment. While the increasing availability of these tools will lead research in yet unanticipated directions, a few emerging issues include greater insight into the controls on organic matter (OM) mineralization, better models for the understanding of benthic fluxes to reconcile microelectrode and larger-scale chamber measurements, insight into the impacts of redox changes on trace metal behavior, new insights into geochemical reaction pathways in surface sediments, and a better understanding of contaminant fate in nearshore sediments
Two sites in the eastern Fram Strait, the Vestnesa Ridge and the Yermak Plateau, have been surveyed and sampled providing a depositional record over the last glacial‐interglacial cycle. The Fram Strait is the only deep‐water connection from the Arctic Ocean to the North Atlantic and contains a marine sediment record of both high latitude thermohaline flow and ice sheet interaction. On the Vestnesa Ridge, the western Svalbard margin, a sediment drift was identified in 1226 m of water. Gravity and multicores from the crest of the drift recovered turbidites and contourites. 14C dating indicates an age range of 8287 to 26 900 years BP (Early Holocene to Late Weichselian). The Yermak Plateau is characterized by slope sediments in 961 m of water. Gravity and multicores recovered contourites and hemipelagites. 14C ages were between 8615 and 46 437 years BP (Early Holocene to mid‐Weichselian). Downcore dinoflagellate cyst analyses from both sites provide a record of changing surface water conditions since the mid‐Weichselian, suggesting variable sea ice extent, productivity and polynyas present even during the Last Glacial Maximum. Four layers of ice‐rafted debris were also identified and correlated within the cores. These events occurred ca at 9, 24 to 25, 26 to 27 and 43 ka, asynchronous with Heinrich layers in the wider north‐east Atlantic and here interpreted as reflecting instability in the Svalbard/Barents Ice sheet and the northward advection of warm Atlantic water during the Late Weichselian. The activity of the ancestral West Spitsbergen Current is interpreted using mean sortable silt records from the cores. On the Vestnesa Ridge drift the modern mass accumulation rate, calculated using excess 210Pb, is 0·076 g cm−2 year−1. On the Yermak Plateau slope the modern mass accumulation rate is 0·053 g cm−2 year−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.