Dopamine (DA) functions as an essential neuromodulator in the brain and retina such that disruptions in the dopaminergic system are associated with common neurologic disorders such as Parkinson's disease. Although a reduction in DA content has been observed in diabetes, its effects in the development of diabetes-induced neuropathy remains unknown. Because the retina is rich in DA and has a well known diabetes-induced pathology (diabetic retinopathy or DR), this study was designed to examine the role of retinal DA deficiency in early visual defects in DR. Using rodent models of type 1 diabetes mellitus, we investigated whether diabetes caused a reduction in retinal DA content in both rats and mice and determined whether restoring DA levels or activating specific DA receptor pathways could improve visual function (evaluated with optokinetic tracking response) of diabetic mice, potentially via improvement of retinal function (assessed with electroretinography). We found that diabetes significantly reduced DA levels by 4 weeks in rats and by 5 weeks in mice, coincident with the initial detection of visual deficits. Treatment with L-DOPA, a DA precursor, improved overall retinal and visual functions in diabetic mice and acute treatment with DA D1 or D4 receptor agonists improved spatial frequency threshold or contrast sensitivity, respectively. Together, our results indicate that retinal DA deficiency is an underlying mechanism for early, diabetes-induced visual dysfunction and suggest that therapies targeting the retinal dopaminergic system may be beneficial in early-stage DR.
Adenosine is an endogenous signaling molecule upregulated during inflammatory conditions. Acting through the A2b receptor (A2bR), the predominant adenosine receptor in human colonic epithelia, adenosine has been directly implicated in immune and inflammatory responses in the intestine. Little is known about expression and regulation of A2bR during inflammation. Tumor necrosis factor alpha (TNF-alpha) is highly upregulated during chronic and acute inflammatory diseases. This study examined the expression of A2bR during colitis and studied effects of TNF-alpha on A2bR expression, signaling and function. Results demonstrated that A2bR expression increases during active colitis. TNF-alpha pretreatment of intestinal epithelial cells increased A2bR messenger RNA and protein expression. TNF-alpha significantly increased adenosine-induced membrane recruitment of A2bR and cyclic adenosine monophosphate downstream signaling. Further, TNF-alpha potentiated adenosine-induced shortcircuit current and fibronectin secretion. In conclusion, we demonstrated that TNF-alpha is an important regulator of A2bR, and during inflammation, upregulation of TNF-alpha may potentiate adenosine-mediated responses.
Background & Aims-Increased free radicals and/or impaired antioxidant defenses have been shown to play a pathogenetic role in human and animal models of inflammatory bowel disease. Our previous studies showed that prohibitin (PHB) levels are decreased during colitis and that cultured intestinal epithelial cells overexpressing PHB are protected from oxidative stress. This study investigated the effect of intestinal epithelial cell-specific PHB overexpression on oxidative stress associated with experimental colitis and the potential mechanism by which PHB functions as an antioxidant using PHB transgenic mice.
Introduction-Intestinal epithelial expression of anti-oxidants and NF-κB contribute to mucosal barrier integrity and epithelial homoestasis, two key events in the pathogenesis of inflammatory bowel disease. Genetic restoration of intestinal epithelial prohibitin 1 (PHB) levels during experimental colitis reduces the severity of disease through sustained epithelial anti-oxidant expression and reduced NF-κB activation. To determine the therapeutic potential of restoring epithelial PHB during experimental colitis in mice, we assessed two methods of PHB colonic mucosal delivery: adenovirus-directed administration by enema and poly (lactic acid) nanoparticle (NPs) delivery by gavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.