Background: Electronic cigarettes (e-cigarettes) were first introduced in the U.S. market in 2006, with the more recent evolution of "pod-mod" e-cigarettes such as JUUL introduced in 2015. Although marketed as a smoking cessation tool, e-cigarettes are rarely used for this purpose in youth. This review aims to synthesize the literature regarding e-cigarette use among youth, and provides a resource for clinicians, educators, and families that helps answer commonly asked questions about e-cigarettes. Methods: PubMed, Scopus, and PsycINFO search was performed using search terms "Electronic Nicotine Delivery Systems," "e cigarettes," "e-cigarettes," "electronic cigarettes," "vaping," "JUUL," "e-cigs," and "vape pens." Search results were filtered to only include those related to adolescents and young adults. Results: E-cigarette use among youth is common, with rates of use increasing from 1.5% in 2011 to 20.8% in 2018. Pod mod devices such as JUUL have gained favor among youth for their sleek design, user-friendly function, desirable flavors, and ability to be used discreetly in places where smoking is forbidden. Adolescents are often uninformed about the constituents of ecigarettes, and little is known about the long-term effects of e-cigarettes. Studies have suggested a "gateway" effect for combustible cigarettes and cannabis use. Conclusions: E-cigarette use is becoming increasingly common among youth, leading to a myriad of questions and concerns from providers, educators, and family members. More research is needed to determine the ultimate public health impact of e-cigarette use. The authors provide a summary table of frequently asked questions in order to help clarify these common concerns.
Cigarette smoking is the leading cause of preventable deaths worldwide and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus, predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a conditioned stimulus, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness.
Objectives Research using very low nicotine content (VLNC) cigarettes has shown that participants underreport use of non-study cigarettes. Biomarkers of nicotine exposure could be used to verify compliance with VLNC cigarettes. This study aimed to characterize biomarkers of exposure when participants exclusively use VLNC cigarettes. Methods 23 participants stayed in a hotel that permitted smoking for 5 days and 4 nights. They were provided 2 packs of VLNC cigarettes each day (0.4 mg of nicotine/g of tobacco; Spectrum cigarettes) and did not have access to other tobacco products. 24-hour urine samples were collected to assess exposure to nicotine and anatabine. Results After 4 days of exclusive use, the geometric means for urinary total cotinine, total nicotine equivalents (TNE), and anatabine were 1.13 nmol/ml (92% reduction), 3.17 nmol/ml (94% reduction) and 0.0031 nmol/ml (93% reduction). The population estimates of the 95th percentile of cotinine, TNE, and anatabine levels were 2.69, 6.41, and 0.0099 nmol/ml, respectively. Conclusions Study participants exclusively smoking 0.4 mg/g Spectrum cigarettes are unlikely to have biomarker values above these levels. The data presented here will be valuable to researchers conducting research on use of VLNC cigarettes.
Introduction Although nicotine is the primary reinforcing constituent in cigarettes, there is evidence that other constituents in cigarette smoke may interact with nicotine to reinforce smoking behavior. Methods The present experiments investigated whether a novel combination of these cigarette smoke constituents would increase nicotine self-administration in adult male rats. The constituents included five minor alkaloids (anabasine, nornicotine, cotinine, myosmine, and anatabine), two β-carbolines (harman and norharman), and acetaldehyde. All doses were indexed to be proportional to concentrations in cigarette smoke given a standard dose of nicotine used in rodent self-administration, or ten times higher than this standard. To model MAO inhibition seen in chronic smokers, some groups received separate injections of tranylcypromine prior to each self-administration session. Results Tranylcypromine increased low-dose nicotine self-administration independent of other smoke constituents, which had no effect on self-administration behavior. The effect of tranylcypromine was confirmed across a large range of reinforcement schedules. The effect of tranylcypromine on low-dose nicotine self-administration was observed regardless of whether the injection was delivered 1-hr or 23-hrs prior to the self-administration session, consistent with the interpretation that MAO inhibition was responsible for the increase in self-administration, instead of acute off-target effects. Conclusions These data suggest that this cocktail of constituents does not significantly alter the primary reinforcing effects of nicotine, but constituents that inhibit MAO may increase the primary reinforcing effects of nicotine, especially at low doses.
introduction: Food and Drug Administration-mandated product standards that drastically reduce nicotine content in cigarettes aim to decrease smoking and thus improve health outcomes for millions of U.S. smokers. Researchers have suggested that nicotine reduction should be implemented gradually, but a gradual nicotine reduction may shift the minimum level of nicotine required to reinforce behavior or may result in different levels of compensatory smoking behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.