The complete nucleotide sequences of the nucleoprotein (N), phosphoprotein (P), matrix protein (M), and fusion protein (F) genes of 15 Canadian human metapneumovirus (hMPV) isolates were determined. Phylogenetic analysis revealed two distinct genetic clusters, or groups for each gene with additional sequence variability within the individual groups. Comparison of the deduced amino acid sequences for the N, M and F genes of the different isolates revealed that all three genes were well conserved with 94.1-97.6% identity between the two distinct clusters The P gene showed more diversity with 81.6-85.7% amino acid identity for isolates between the two clusters, and 94.6-100% for isolates within the same cluster.
Human metapneumovirus (hMPV) has been associated with respiratory illnesses like those caused by human respiratory syncytial virus (HRSV) infection. Similar to other pneumoviruses, genetic diversity has been reported for hMPV. Little information is currently available on the genetic variability of the G glycoprotein (G), which is the most variable gene in RSV and avian pneumovirus. The complete nucleotide sequences of the G open reading frame (ORF) of 24 Canadian hMPV isolates were determined. Phylogenetic analysis showed the existence of two major groups or clusters (1 and 2). All but one of the hMPV isolates that we examined belonged to cluster 1. Additional genetic variability was observed in cluster 1, which separated into two genetic subclusters. Within cluster 1 the nucleotide sequence identity for the G ORF was 74.2 to 100%, and the identity for the predicted amino acid sequence was 61.4 to 100%. The G genes of cluster 1 isolates were more divergent from the cluster 2 isolates, with 45.6 to 50.5% and 34.2 to 37.2% identity levels for the nucleotide and amino acid sequences, respectively. Sequence analysis also revealed changes in stop codon usage, resulting in G proteins of different lengths (217, 219, 228, and 236 residues). Western blot analysis with the use of hMPV-specific polyclonal antisera to each hMPV cluster showed significant antigenic divergence between the G proteins of clusters 1 and 2. These results suggest that the G protein of hMPV is continuously evolving and that the genetic diversity observed for the hMPV genes is reflected in the antigenic variability, similar to HRSV.
Conventional HIV drug resistance (HIVDR) genotyping utilizes Sanger sequencing (SS) methods, which are limited by low data throughput and the inability of detecting low abundant drug resistant variants (LADRVs). Here we present a next generation sequencing (NGS)-based HIVDR typing platform that leverages the advantages of Illumina MiSeq and HyDRA Web. The platform consists of a fully validated sample processing protocol and HyDRA web, an open web portal that allows automated customizable NGS-based HIVDR data processing. This platform was characterized and validated using a panel of HIV-spiked plasma representing all major HIV-1 subtypes, pedigreed plasmids, HIVDR proficiency specimens and clinical specimens. All examined major HIV-1 subtypes were consistently amplified at viral loads of ≥1,000 copies/ml. The gross error rate of this platform was determined at 0.21%, and minor variations were reliably detected down to 0.50% in plasmid mixtures. All HIVDR mutations identifiable by SS were detected by the MiSeq-HyDRA protocol, while LADRVs at frequencies of 1~15% were detected by MiSeq-HyDRA only. As compared to SS approaches, the MiSeq-HyDRA platform has several notable advantages including reduced cost and labour, and increased sensitivity for LADRVs, making it suitable for routine HIVDR monitoring for both patient care and surveillance purposes.
The coronavirus disease 2019 (Covid-19) pandemic, caused by SARS-CoV-2, has resulted in a global testing supply shortage. In response, pooled testing has emerged as a promising strategy that can immediately increase testing capacity. In pooled sample testing, multiple samples are combined (or pooled) together and tested as a single unit. If the pool is positive, the individual samples can then be individually tested to identify the positive case(s). Here, we provide support for the adoption of sample pooling with the point-of-care Cepheid Xpert® Xpress SARS-CoV-2 molecular assay. Corroborating previous findings, the limit of detection of this assay was comparable to laboratory-developed reverse-transcription quantitative PCR SARS-CoV-2 tests, with observed detection below 100 copies/mL. The Xpert® Xpress assay detected SARS-CoV-2 after samples with minimum viral loads of 461 copies/mL were pooled in groups of six. Based on these data, we recommend the adoption of pooled testing with the Xpert® Xpress SARS-CoV-2 assay where warranted based on public health needs. The suggested number of samples per pool, or the pooling depth, is unique for each point-of-care testing site and can be determined by the positive test rates. To statistically determine appropriate pooling depth, we have calculated the pooling efficiency for numerous combinations of pool sizes and test rates. This information is included as a supplemental dataset that we encourage public health authorities to use as a guide to make recommendations that will maximize testing capacity and resource conservation.
In the past 25 years, the worldwide AIDS epidemic has grown such that roughly 38 million people were estimated to be living with the disease worldwide at the end of 2003. The introduction of antiretroviral-based therapies, beginning in 1987, has enabled many to live with HIV as a chronic, rather than terminal, disease. However, the emergence and spread of drug-resistant strains highlights the continued need for new therapies with novel modes of action. In 2003, the FDA and EMEA approved enfuvirtide (Fuzeon), a 36 amino acid peptide derived from the natural gp41 HR2 sequence, as the first HIV fusion inhibitor. T-1249, a 39 amino acid fusion inhibitor, is active against viruses that develop resistance to enfuvirtide. The development of FIs and the processes to manufacture enfuvirtide and T-1249 on an unprecedented scale for peptide therapeutics are presented. Synthetic routes based on a combination of solid phase peptide synthesis and solution phase fragment condensation as well as the analytical controls necessary to insure a robust process are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.