This paper presents a system developed for detecting sexual predators in online chat conversations using a two-stage classification and behavioral features. A sexual predator is defined as a person who tries to obtain sexual favors in a predatory manner, usually with underage people. The proposed approach uses several text categorization methods and empirical behavioral features developed especially for the task at hand. After investigating various approaches for solving the sexual predator identification problem, we have found that a two-stage classifier achieves the best results. In the first stage, we employ a Support Vector Machine classifier to distinguish conversations having suspicious content from safe online discussions. This is useful as most chat conversations in real life do not contain a sexual predator, therefore it can be viewed as a filtering phase that enables the actual detection of predators to be done only for suspicious chats that contain a sexual predator with a very high degree. In the second stage, we detect which of the users in a suspicious discussion is an actual predator using a Random Forest classifier. The system was tested on the corpus provided by the PAN 2012 workshop organizers and the results are encouraging because, as far as we know, our solution outperforms all previous approaches developed for solving this task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.