The reaction of a 1,6-enyne with a hydrosilane catalyzed by Rh(acac)(CO)(2), Rh(4)(CO)(12), or Rh(2)Co(2)(CO)(12) under ambient CO atmosphere or N(2) gives 2-methyl-1-silylmethylidene-2-cyclopentane or its heteroatom congener in excellent yield through silylcarbocycization (SiCaC) process. The same reaction, but in the presence of a phosphite such as P(OEt)(3) and P(OPh)(3) under 20 atm of CO, affords the corresponding 2-formylmethyl-1-silylmethylidene-2-cyclopentane or its heteroatom congener with excellent selectivity through carbonylative silylcarbocycization (CO-SiCaC) process. The SiCaC reaction has also been applied to a 1,6-enyne bearing a cyclohexenyl group as the alkene moiety and a 1,7-enyne system. The functionalized five- and six-membered ring systems obtained by these novel cyclization reactions serve as useful and versatile intermediates for the syntheses of natural and unnatural heterocyclic and carbocyclic compounds. Possible mechanisms for the SiCaC and CO-SiCaC reactions as well as unique features of these processes are discussed.
The first topochemical 1,6-polymerization of a triene has been observed. The required supramolecular structure for this polymerization was achieved by the pi-pi stacking of the isonicotinate functionality. The crystal environment of this polymerization reaction controlled both the molecular and supramolecular structure of the polymer and allowed its structure to be determined by single-crystal X-ray diffraction.
GSK2798745, a clinical candidate, was identified as an inhibitor of the transient receptor potential vanilloid 4 (TRPV4) ion channel for the treatment of pulmonary edema associated with congestive heart failure. We discuss the lead optimization of this novel spirocarbamate series and specifically focus on our strategies and solutions for achieving desirable potency, rat pharmacokinetics, and physicochemical properties. We highlight the use of conformational bias to deliver potency and optimization of volume of distribution and unbound clearance to enable desirable in vivo mean residence times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.