A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015
Warfarin is the anticoagulant of choice for venous thromboembolism (VTE) treatment, although its suppression of the endogenous clot‐dissolution complex APC:PS may ultimately lead to longer time‐to‐clot dissolution profiles, resulting in increased risk of re‐thrombosis. This detrimental effect might not occur during VTE treatment using other anticoagulants, such as rivaroxaban or enoxaparin, given their different mechanisms of action within the coagulation network. A quantitative systems pharmacology model was developed describing the coagulation network to monitor clotting factor levels under warfarin, enoxaparin, and rivaroxaban treatment. The model allowed for estimation of all factor rate constants and production rates. Predictions of individual coagulation factor time courses under steady‐state warfarin, enoxaparin, and rivaroxaban treatment reflected the suppression of protein C and protein S under warfarin compared to rivaroxaban and enoxaparin. The model may be used as a tool during clinical practice to predict effects of anticoagulants on individual clotting factor time courses and optimize antithrombotic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.