Advances in the Internet of Things (IoT) are helping to make water management smarter and optimizing consumption in the smart agriculture industry. This article proposes a new topology of sensor nodes based on the use of inexpensive and highly efficient components, such as water level, soil moisture, temperature, humidity, and rain sensors. Additionally, to guarantee good performance of the system, the used transmission module is based on LoRa LPWAN technology. The design of the main circuit board of the system is optimized by combining two layers and implementing software optimization. The overall sensor network is developed and tested in the research lab, and real farms can be controlled by users manually or automatically using the mobile application. Experimental results are produced by testing sensor and communication link effectiveness, and are subsequently validated in the field through a one-week measurement campaign.
Along with the development of the Internet of Things (IoT), waste management has appeared as a serious issue. Waste management is a daily task in urban areas, which requires a large amount of labour resources and affects natural, budgetary, efficiency, and social aspects. Many approaches have been proposed to optimize waste management, such as using the nearest neighbour search, colony optimization, genetic algorithm, and particle swarm optimization methods. However, the results are still too vague and cannot be applied in real systems, such as in universities or cities. Recently, there has been a trend of combining optimal waste management strategies with low-cost IoT architectures. In this paper, we propose a novel method that vigorously and efficiently achieves waste management by predicting the probability of the waste level in trash bins. By using machine learning and graph theory, the system can optimize the collection of waste with the shortest path. This article presents an investigation case implemented at the real campus of Ton Duc Thang University (Vietnam) to evaluate the performance and practicability of the system’s implementation. We examine data transfer on the LoRa module and demonstrate the advantages of the proposed system, which is implemented through a simple circuit designed with low cost, ease of use, and replace ability. Our system saves time by finding the best route in the management of waste collection.
Smart homes are an element of developing smart cities. In recent years, countries around the world have spared no effort in promoting smart cities. Smart homes are an interesting technological advancement that can make people’s lives much more convenient. The development of smart homes involves multiple technological aspects, which include big data, mobile networks, cloud computing, Internet of Things, and even artificial intelligence. Digital information is the main component of signal control and flow in a smart home, while information security is another important aspect. In the event of equipment failure, the task of safeguarding the system’s information is of the utmost importance. Since smart homes are automatically controlled, the problem of mobile network security must be taken seriously. To address these issues, this paper focuses on information security, big data, mobile networks, cloud computing, and the Internet of Things. Security efficiency can be enhanced by using a Secure Hash Algorithm 256 (SHA-256), which is an authentication mechanism that, with the help of the user, can authenticate each interaction of a given device with a WebServer by using an encrypted username, password, and token. This framework could be used for an automated burglar alarm system, guest attendance monitoring, and light switches, all of which are easily integrated with any smart city base. In this way, IoT solutions can allow real-time monitoring and connection with central systems for automated burglar alarms. The monitoring framework is developed on the strength of the web application to obtain real-time display, storage, and warning functions for local or remote monitoring control. The monitoring system is stable and reliable when applying SHA-256.
Software-Defined Networking (SDN) has opened a promising and potential approach for future networks, which mostly requires the low-level configuration to implement different controls. With the high advantages of SDN by decomposing the network control plane from the data plane, SDN has become a crucial platform to implement Internet of Things (IoT) services. However, a static SDN controller placement cannot obtain an efficient solution in distributed and dynamic IoT networks. In this paper, we investigate an optimization framework under a well-known theory, namely submodularity optimization, to formulate and address different aspects of the controller placement problem in a distributed network, specifically in an IoT scenario. Concretely, we develop a framework that deals with a series of controller placement problems from basic to complicated use cases. Corresponding to each use case, we provide discussion and a heuristic algorithm based on the submodularity concept. Finally, we present extensive simulations conducted on our framework. The simulation results show that our proposed algorithms can outperform considered baseline methods in terms of execution time, the number of controllers, and network latency.
Artificial intelligence (AI) technologies have seen strong development. Many applications now use AI to diagnose breast cancer. However, most new research has only been conducted in centralized learning (CL) environments, which entails the risk of privacy breaches. Moreover, the accurate identification and localization of lesions and tumor prediction using AI technologies is expected to increase patients' likelihood of survival. To address these difficulties, we developed a federated learning (FL) facility that extracts features from participating environments rather than a CL facility. This study's novel contributions include (i) the application of transfer learning to extract data features from the region of interest (ROI) in an image, which aims to enable careful pre-processing and data enhancement for data training purposes; (ii) the use of synthetic minority oversampling technique (SMOTE) to process data, which aims to more uniformly classify data and improve diagnostic prediction performance for diseases; (iii) the application of FeAvg-CNN + MobileNet in an FL framework to ensure customer privacy and personal security; and (iv) the presentation of experimental results from different deep learning, transfer learning and FL models with balanced and imbalanced mammography datasets, which demonstrate that our solution leads to much higher classification performance than other approaches and is viable for use in AI healthcare applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.