In this paper, the author presents the design and implementation of an Sband transmitter for nanosatellites. By combining heterostructure field effect transistors (HFET) and laterally diffused metal–oxide–semiconductor (LDMOS) technology and using flexible structure and flexible control method, this research obtained 60 dB gain power when input is -14 dBm, output power is 46 dBm (more than 25 W) in 2,1 GHz -2,3 Ghz frequency; phase noise is -80 dBc/Hz at 100 KHz offset frequency. Unlike other traditional transmitters, this transmitter was designed with multi-stages which have multi-peaks resonance to expand bandwidth to respond to the requirement of generation of the complex signal in wide band. Moreover, the phase locked loop (PLL) in frequency synthesizer makes the frequency conversion more flexible and output frequency more stable; thermal problem in module also was solved by using thermistor and operation mode. Measurement results prove that the design does not only satisfy the requirements of nanosatellites but also can be applied to other satellites together with their ground station because it has open configure with flexible structure and flexible control method.
The low noise amplifier (LNA) plays an important role in the radiofrequency receiver front-ends, its main function is to amplify the weak receiving signal from the ground noise, as well as improving the receiver sensitivity. For LNAs which operate in the frequencies higher than the S-band, the printed circuit board (PCB) with high cost substrate materials have been used in almost designs so far, thus increasing the total price of the entire receiving unit. This paper introduces a new approach, in which a LNA has been designed using the FR-4 material, a common, low-cost substrate in PCB fabrication. The proposed LNA will maintain the quality of all of the important parameters such as gain, noise figure in compared with the LNAs designed by high cost material substrates. The stepped impedance matching technique is used in order to reach a balance between the circuit dimension and its efficiency. The frequency range of the proposed LNA lies within the X-band, which is a suitable range for military RADAR applications. Furthermore, it is possible to apply the desired LNA in the ground station receiver front-ends of a Low Earth Orbit (LEO) Earth Observation Satellite system
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.