Abstract—Nowadays, there have been many signature-based intrusion detection systems deployed and widely used. These systems are capable of detecting known attacks with low false alarm rates, fast detection times, and little system resource requirements. However, these systems are less effective against new attacks that are not included in the ruleset. In addition, recent studies provide a new approach to the problem of detecting unknown types of network attacks based on machine learning and deep learning. However, this new approach requires a lot of resources, processing time and has a high false alarm rate. Therefore, it is necessary to find a solution that combines the advantages of the two approaches above in the problem of detecting network attacks. In this paper, the authors present a method to automatically generate network attack detection rules for the IDS system based on the results of training machine learning models. Through testing, the author proves that the system that automatically generates network attack detection rules for IDS based on machine learning meets the requirements of increasing the ability to detect new types of attacks, ensuring automatic effective updates of new signs of network attacks.
Tóm tắt—Ngày nay, đã có nhiều hệ thống phát hiện xâm nhập dựa trên chữ ký được triển khai và sử dụng rộng rãi. Các hệ thống này có khả năng phát hiện các cuộc tấn công đã biết với tỷ lệ báo động giả thấp, thời gian phát hiện nhanh và yêu cầu ít tài nguyên hệ thống. Tuy nhiên, các hệ thống này kém hiệu quả khi chống lại các cuộc tấn công mới không có trong tập luật. Các nghiên cứu gần đây cung cấp một cách tiếp cận mới cho vấn đề phát hiện các kiểu tấn công mạng mới dựa trên học máy và học sâu. Tuy nhiên, cách tiếp cận này đòi hỏi nhiều tài nguyên, thời gian xử lý. Vì vậy, cần tìm ra giải pháp kết hợp ưu điểm của hai cách tiếp cận trên trong bài toán phát hiện tấn công mạng. Trong bài báo này, nhóm tác giả trình bày phương pháp tự động sinh luật phát hiện tấn công mạng cho hệ thống phát hiện xâm nhập dựa trên kết quả huấn luyện mô hình học máy. Qua thử nghiệm, tác giả chứng minh rằng phương pháp này đáp ứng yêu cầu tăng khả năng phát hiện chính xác các kiểu tấn công mới, đảm bảo tự động cập nhật hiệu quả các dấu hiệu tấn công mạng mới vào tập luật.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.