Spatial variability of hydro‐physical properties has long been observed, whereas temporal variation is much less documented and considered in studies and applications, particularly of paddy clay soils under different cropping systems. The objective of this study was therefore to assess the seasonal‐ and inter‐seasonal variation of selected hydro‐physical properties of a paddy clay soil under different rice‐based cropping systems with contrasting tillage. In a long‐term experiment, plots were arranged in a randomized complete block design with four treatments and four replications: (i) rice–rice–rice; (ii) rice–maize–rice; (iii) rice–mung bean–rice; and (iv) rice–mung bean–maize. Soil samples were collected at three depths (0–10, 10–20 and 20–30 cm) at three times during two cropping seasons, i.e., 15 days after soil preparation (DASP), 45 DASP and 90 DASP during the winter–spring and spring–summer seasons. Results show that temporal variability of soil bulk density, macro‐porosity (MacP) and matrix‐porosity within both seasons and between seasons was limited for cropping systems with upland crop rotations, whereas within season variation was significant for rice monoculture system. Observed variation in bulk density, matrix‐porosity and MacP was mainly associated with cropping system and soil depth. Field saturated hydraulic conductivity of topsoil showed great temporal variability, both seasonal and inter‐seasonal, in correspondence with MacP (r = 0·58). These results highlight the need of depth differentiated soil sampling and time consideration when evaluating management practices on soil physical properties and modeling the hydrological behavior of paddy soil. Copyright © 2017 John Wiley & Sons, Ltd.
This study aimed to investigate effects of nitrogen (N) fertilizer rates and inoculation of rice seeds with N-fixing bacterium Gluconacetobacter diazotrophicus on the growth parameters and yield of OM5451 and OM6976 rice varieties in the Vietnamese Mekong Delta region. Nitrogen fertilizer rates of 50 kg N.ha-1 and 100 kg N.ha-1 were used, with latter reflecting farmer practice. Three rice seed inoculation methods were also employed: Seeds soaked in water for 24 hours and allowed to stand for 30 hours (control) (B0); Seeds soaked in water for 24 hours and inoculated with G. diazotrophicus for 30 hours (B1); Seeds soaked with G. diazotrophicus in water for 24 hours and allowed to stand for 30 hours. Applying 50 kg N.ha-1 without combining with NFB bacterium in this experiment generally resulted in less tillers, shorter plants, a lower SPAD index, and lower grain yield. Combining G. diazotrophicus bacterium with reduced N fertilizer of 50 kg N.ha-1 demonstrated rice growth and yield may be maintained in both varieties compared to 100 kg N.ha-1. These results providing a firm foundation for future research of adding NFB to paddy soils to decrease the N fertilizer requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.